
2023-06-14

TRUST. It’s what certificates are all about. How do we know that we can trust a server? We verify that the

server has a certificate, and that the certificate is signed by someone we trust. That can be a well-known third
party like Let’s Encrypt, or our own certificate authority. In this video, I’m going to cover the basics of

setting up a root private key and signing certificates using OpenSSL, and running a certificate authority
server. As a bonus, I’m using a Yubikey to store the certiicate authorities private keys, so they can’t be

compromised without stealing the physical dongle (they CAN however be used to generate leaf certificates if the

certificate authority is compromised). So follow along for a fun journey into the basics of setting up your
public key infrastructure!

Contents

Self-Hosted TRUST with your own Certificate Authority!

#networking #security #homelab

Video-

A Bit About PKI-

Certificate Authority in OpenSSL-

OpenSSL - Setup the OpenSSL CA Config-

OpenSSL - Generate Root Certificate-

OpenSSL - Generate Intermediate Certificate-

OpenSSL - Add Intermediate Key to Yubikey-

Install Smallstep-

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 1/18

https://www.apalrd.net/posts/2023/network_acme/
https://www.apalrd.net/tags/networking/
https://www.apalrd.net/tags/security/
https://www.apalrd.net/tags/homelab/

Video

Step - Setup Debian-

Step - Install Smallstep CLI-

Step - Build Step-CA from source-

Step - Setup Step-CA-

Step - Add SystemD Service-

Step - Enable ACME Challenges-

Using your CA-

Using your CA - Trust your Root-

Using your CA - In Caddy-

References-

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 2/18

A Bit About PKI

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 3/18

https://youtu.be/BKCj6A4CHV4
https://youtu.be/BKCj6A4CHV4

Public key encryption provides a secure method of transmitting data over insecure networks. It allows for secure

communication by using a pair of keys: a public key for encryption and a private key for decryption. TLS
(Transport Layer Security) certificates, which are based on public key encryption, ensure the authenticity and

integrity of data exchanged between a server and a client. They provide trust and verification, protecting
against unauthorized access, data tampering, and eavesdropping, thus establishing secure and encrypted

connections.

2-layer vs 3-layer CA

Advantages to 2-layer:

Advantages of 3-layer:

2-layer-

Root CA public trusted by users, private used to sign servers-

Leaf CA generated via ACME ~daily from servers-

3-layer-

Root CA public trusted by users, private kept entirely offline-

Intermediate CA public unused, private used to sign servers-

Leaf CA generated via ACME ~daily from servers-

Simple to setup-

Single private key can be kept in multiple places (backups, HSMs, …)-

Root CA can issue a CRL which can revoke intermediate certificates (although we will not do that in this
tutorial!)

-

Intermediate CA can be issued for less time than root, so you can manually renew intermediate CA periodically
so if it’s lost the time for exposure isn’t as high

-

Root CA private key can be kept entirely offline, and reissue intermediate CA certs without keeping the

private key in multiple palces

-

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 4/18

We will be setting up a 3-layer CA where the root keys are generated by OpenSSL and kept entirely offline (how

you do that is up to you, this tutorial is already long enough) and the intermediate certificates are kepy on
the Yubikey and used to sign server and user certificates.

Certificate Authority in OpenSSL

First, we are going to setup the certificate authority and generate our most precious private keys. To do this,

we can use any Linux system with OpenSSL, such as Debian or Alpine. We also need the yubikey manager package

installed. On Debian you can install this through apt with apt install yubikey-manager .

You do NOT need to use the same system as your eventual Certificate authority to generate these private keys!

You can use an ephemeral system like a live image, as long as you can copy off the resulting certificates
(public keys) for the CA and the root public key somewhere safe for later. For ease, I’m going to create a new

directory in /root/ca on my eventual CA system to house the certificates and then delete them once all is done

and backed up safe. Make sure you update any paths on your own system if you’re using a USB drive for your
private keys, or copy them out later.

This would also be a good time to set your Yubikey PINs. The defaults are what an idiot would use on their
luggage.

Setup the OpenSSL CA Config

We don’t need an intermediate CA config file since we are just generating the private key to be used by

Smallstep, so certificates won’t be signed by OpenSSL using the intermedate key.

Put the config file in /root/ca/root.cnf .

OpenSSL root CA configuration file.

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 5/18

https://docs.yubico.com/yesdk/users-manual/application-piv/pin-puk-mgmt-key.html

[ca]

`man ca`

default_ca = CA_root

[CA_root]

Directory and file locations.

dir = /root/ca

certs = $dir/certs

crl_dir = $dir/crl

new_certs_dir = $dir/newcerts

database = $dir/index.txt

serial = $dir/serial

RANDFILE = $dir/private/.rand

The root key and root certificate.

Match names with Smallstep naming convention

private_key = $dir/root_ca_key

certificate = $dir/root_ca.crt

For certificate revocation lists.

crlnumber = $dir/crlnumber

crl = $dir/crl/ca.crl.pem

crl_extensions = crl_ext

default_crl_days = 30

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

name_opt = ca_default

cert_opt = ca_default

default_days = 25202

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 6/18

preserve = no

policy = policy_strict

[policy_strict]

The root CA should only sign intermediate certificates that match.

See the POLICY FORMAT section of `man ca`.

countryName = match

organizationName = match

commonName = supplied

[req]

Options for the `req` tool (`man req`).

default_bits = 4096

distinguished_name = req_distinguished_name

string_mask = utf8only

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

Extension to add when the -x509 option is used.

x509_extensions = v3_ca

[req_distinguished_name]

See <https://en.wikipedia.org/wiki/Certificate_signing_request>.

commonName = Common Name

countryName = Country Name (2 letter code)

0.organizationName = Organization Name

[v3_ca]

Extensions for a typical CA (`man x509v3_config`).

subjectKeyIdentifier = hash

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 7/18

And also don’t forget to create those directories:

Generate Root Certificates

Keep this VERY SAFE, preferably offline. Compromising the root_ca_key means any of your servers (and users with

mutual TLS) can be impersonated.

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[v3_intermediate_ca]

Extensions for a typical intermediate CA (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true, pathlen:0

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

mkdir -p /root/ca /root/ca/certs /root/ca/crl /root/ca/newcerts /root/ca/private

touch /root/ca/index.txt

echo 1420 > serial

Generate a private key (needs a passphrase, don't forget the passphrase)

openssl genrsa -aes256 -out /root/ca/root_ca_key 4096

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 8/18

Congrats, we have a private key and 69-year certificate for it! Now we need a short(er) lived intermediate
certificate. For this example, I’m going to use 10 years, although in an enterprise environment you’ll probably

want to go a lot shorter (2-5 years, or as often as you feel comfortable bringing out the root private key to
offline-sign new certs and update your Yubikeys).

If you want to examine the key, you can use openssl x509 -noout -text -in /root/ca/root_ca.crt

Generate Intermediate Certificate

Similar to above, but we sign the public key with the root private key. We need to use a 2048 bit key for this
to fit in the Yubikey’s PIV storage (which does not support 4096 bit keys with the PIV app, but does with PGP)

If you want to examine the key, you can use openssl x509 -noout -text -in /root/ca/intermediate_ca.crt

Add Intermediate Key to Yubikey

Sign a 69-year (nice) certificate, to be used by clients mostly

openssl req config /root/ca/root cnf key /root/ca/root ca key days 25202 new x509 sha256 extensions v3 ca o

Generate a private key (needs a passphrase)

openssl genrsa -aes256 -out /root/ca/intermediate_ca_key 2048

Generate a certificate-signing-request (CSR) for the intermediate CA key

openssl req -config /root/ca/root.cnf -new -sha256 -key /root/ca/intermediate_ca_key -out /root/ca/intermediate_ca.

Sign the CSR with the root key

openssl ca -config /root/ca/root.cnf -keyfile /root/ca/root_ca_key -cert /root/ca/root_ca.crt -extensions v3_interm

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 9/18

In this phase, we take the intermediate CA key and import it to the Yubikey so we can use it. We also need to

start the Yubikey service.

So, the commands:

If you are curious about the results, run ykman piv info

Install Smallstep

Setup Debian

Install Debian Bullseye (I know Bookworm just released), no GUI, with SSH although we can disable that later.

Then login, make sure you are root - either login as root, or sudo su to get to a root prompt. Then cd /root

so we can begin.

Instll Yubikey manager tools

apt install yubikey-manager

Start Yubikey PCS service and enable it on boot

systemctl enable pcscd --now

Add the intermediate CA keys in slot 9C

You will need the passphrase for the intermediate private key

There are other slots available, including all of the 'retired' slots if you want

to use your Yubikey for other things and not overwrite slot 9C

ykman piv certificates import 9c /root/ca/intermediate_ca.crt

ykman piv keys import 9c /root/ca/intermediate_ca_key

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 10/18

I’m using “tempest” as the name of my CA, located at tempest.palnet.net . DNS resolves to the IP address of my

system locally, not externally, I don’t own that domain name. Make sure you update the names in any
configuration / examples I list with your own names.

As usual, once you’re done installing run apt update and apt full-upgrade -y to make sure everything is up to
date before continuing.

Install Smallstep CLI

Unfortunately their deb package doesn’t include Yubikey support, so we have to compile that from source, but we

can install the CLI from deb packages. If you don’t want to use a Yubikey for your private keys, you can also
instal the CA from deb packages and skip the whole compiling step below.

Build Step-CA from Source

To build Step-CA, we need to install a recent version of the Go compiler, a few other tools and libraries we
need to build Step-CA, to actually git clone and build step-ca, and install it. Here’s the process:

Download step-cli from github (latest release is 0.24.2)

We need to build step-ca from source to use Yubikey, but if you aren't using Yubikey you can go ahead

and install the ca from deb packages as well.

#wget https://dl.smallstep.com/gh-release/certificates/gh-release-header/v0.24.2/step-ca_0.24.2_amd64.deb

wget https://dl.smallstep.com/gh-release/cli/gh-release-header/v0.24.4/step-cli_0.24.4_amd64.deb

Install using apt

apt install ./*.deb -y

rm ./*.deb

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 11/18

https://en.wikipedia.org/wiki/Tempest_(codename)

Add Backports to sources.list

cat >> /etc/apt/sources.list << EOF

#Backports repository

deb http://deb.debian.org/debian/ bullseye-backports main

deb-src http://deb.debian.org/debian/ bullseye-backports main

EOF

And apt-update

apt update

Install golang (this is the same version in Bookworm, fyi, 1.20 is in Sid still)

And Git, so we can clone stuff

And also some other packages we need to compile Smallstep

apt install golang-1.19-go git libpcsclite-dev gcc make pkg-config curl -y

Add Go 1.19 to PATH for the next operations

export PATH="/usr/lib/go-1.19/bin:$PATH"

Clone the git repo, move to it, and checkout the latest release (as of this writing, 0.24.2, but check Github)

cd /root

git clone https://github.com/smallstep/certificates.git

cd certificates

git checkout v0.24.2

Build process

Once you execute these, go get a coffee and come back, or maybe drive to get a snack, it'll be awhile

make bootstrap

I know this sounds odd but I promise 'install' also does 'build', since it depends on the binary

GOFLAGS are clear so it does a CGO build, which is required for Yubikey support

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 12/18

Now check version: step version and step-ca version to make sure they both run. step-ca should show a release

time/date of now the time you actually built it, which should be now() but in UTC and not your local timezone.

Setup Step-CA

Step-CA usually wants to do its own PKI, so we are going to let it generate a new set of private keys and sign
them, then delete them. So, that’s fun. There aren’t any options to not generate keys.

Anyway, commands for this phase:

make install GOFLAGS=""

This tells the kernel that step-ca can bind to service ports

setcap CAP_NET_BIND_SERVICE=+eip /usr/bin/step-ca

Create a new user for step-ca process, and a home in etc for it

mkdir -p /etc/step

export STEPPATH=/etc/step

useradd step

passwd -l step

Run Step Init to create its folder structure and config

Enter the password for your admin user ('provisioner')

step ca init --name="TEMPEST" --dns="tempest.palnet.net" --address=":443" --provisioner="apalrd" --deployment-type

Copy the certificates (but not the private keys) from the root location to /etc/step and own them to step

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 13/18

Next up, we need to edit /etc/step/config/ca.json to configure our Yubikey instead of internal PKI for this Step
instance. Specifically, replace the key directive which points to a private key with a bit about it being a

yubikey and selecting the parameters for the key management system (KMS). The diff looks like this:

And now we can test it! sudo -u step step-ca /etc/step/config/ca.json , shouldn’t give any errors and should sit

and wait for requests to come in.

Add SystemD Service

Since we presumably want this to run all the time, this should be a service, and systemd is the thing that does
services.

cp /root/ca/root_ca.crt /root/ca/intermediate_ca.crt /etc/step/certs/

chown -R step:step /etc/step/

 "root": "/etc/step/certs/root_ca.crt",

 "federatedRoots": null,

 "crt": "/etc/step/certs/intermediate_ca.crt",

- "key": "/etc/step/secrets/intermediate_ca_key",

+ "key": "yubikey:slot-id=9c",

+ "kms": {

+ "type": "yubikey",

+ "pin": "123456"

+ },

 "address": ":443",

 "insecureAddress": "",

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 14/18

So, write out this service file, or copy and paste this all into the terminal to do it for you:

Enable ACME Challenges

Now that our step-ca is up and running, we can enable the ACME provisioner for it. We are, finally, almost

ready to issue certificates to our infrastructure! For this, we also need the fingerprint , which the ca prints

when it starts up (get it from systemctl status step-ca and look for X.509 Root Fingerprint).

The service script

cat > /etc/systemd/system/step-ca.service << EOF

[Unit]

Description=Smallstep Certificate Authority

[Service]

User=step

Group=step

Environment="STEPPATH=/etc/step"

ExecStart=/usr/bin/step-ca /etc/step/config/ca.json

[Install]

WantedBy=multi-user.target

EOF

Reload daemons and start now

systemctl daemon-reload

systemctl enable --now step-ca

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 15/18

And the commands for this step:

Using your CA

Trust your Root

Here are some instructions on trusting your root certificate in Debian. Remember that the certificate is hosted

by our ACME server, so we can just download it (although it’s certificate won’t yet be trusted, so we need to

ignore certificate errors for now).

You’ll need to do this for every single computer which you use to access your sites, or you’ll get a certificate
error. Fun, right? But once you add the root certificate, then you can continue to add homelab services without

Make sure STEPATH is still set, since we need it for this phase

export STEPPATH=/etc/step

Add the acme provisioner using our admin account

step ca provisioner add acme --type ACME --admin-name apalrd

Restart the service

systemctl restart step-ca

As root, or prepend with sudo of course

wget --no-check-certificate https://tempest.palnet.net/roots.pem -O /usr/local/share/ca-certificates/tempest.crt

update-ca-certificates

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 16/18

needing to individually trust each one on each user’s system.

Using your CA in Caddy

Here’s an example Caddyfile which uses my local CA to issue a signed certificate. Also note that I first added

the root certificate to the trust store on the local system, so I don’t need to separately tell Caddy to trust
the root certificate.

References

Here are some guides I used when writing this script, they might also be useful to you.

#Global options

{

 #Our local ACME server

 acme_ca https://tempest.palnet.net/acme/acme/directory

}

#A single server which will get a TLS certificate automatically

ca-testsvr.palnet.net {

 #All of the options here are left as defaults

 #But just say hello world for now

 respond "Hello, World!"

}

Smallstep ACME Server on Raspberry Pi-

Smallstep ACME Provisoiner Documentation-

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 17/18

https://smallstep.com/blog/build-a-tiny-ca-with-raspberry-pi-yubikey/
https://smallstep.com/docs/step-ca/acme-basics/#configure-step-ca-for-acme

Smallstep Yubikey PIV Documentation-

OpenSSL Documentation-

© 2023 apalrd ::rss feed:: Theme made by panr

23.03.25, 18:33 Self-Hosted TRUST with your own Certificate Authority! :: apalrd's adventures

https://www.apalrd.net/posts/2023/network_acme/ 18/18

https://smallstep.com/docs/step-ca/configuration/#yubikey-piv
https://www.openssl.org/docs/
mailto:adventure@apalrd.net
https://www.apalrd.net/index.xml
https://twitter.com/panr

