
The easiest way to get started using ACME is with Smallstep Certificate

Manager

Learn more >

Updated on: May 20, 2024

Mike Maxey Follow Smallstep

“-Update September 2022-

Run your own private CA & ACME
server using step-ca

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 1/29

https://smallstep.com/docs/certificate-manager/acme
https://twitter.com/smallsteplabs
https://smallstep.com/

If you are looking for an ACME server to use with Apple Managed Device Attestation

(MDA), you are almost in the right place! We can be your ACME server for all your Apple

devices. Let us know you're interested in MDA here. With today's release (v0.13.0), you

can now use ACME to get certificates from step-ca . ACME (RFC8555) is the protocol that

Let's Encrypt uses to automate certificate management for websites. ACME radically

simplifies the deployment of TLS and HTTPS by letting you obtain certificates

automatically, without human interaction.”

ACME support in step-ca means you can easily run your own ACME server to issue

certificates to internal services and infrastructure in production, development, and

other pre-production environments.

 Star smallstep/cli 3,803 Star smallstep/certificates 7,123

Why ACME?

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 2/29

https://go.smallstep.com/secure-device-enrollment-apple-mda
https://github.com/smallstep/certificates
https://tools.ietf.org/html/rfc8555
https://letsencrypt.org/
https://github.com/smallstep/cli
https://github.com/smallstep/cli/stargazers
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates/stargazers

ACME support in step-ca means you can leverage existing ACME clients and libraries

to get certificates from your own certificate authority (CA). The bulk of this post

demonstrates how that's done.

There are lots of reasons you might want to run your own CA, but the two that guided

our ACME implementation are:

1. Using ACME in production to issue certificates to workloads, proxies, queues,

databases, etc. so you can use mutual TLS for authentication & encryption.

2. Simulating Let's Encrypt's CA in dev & pre-production in scenarios where

connecting to Let's Encrypt's staging server is problematic.

Running your own CA is more flexible than using a public Web PKI CA. It means you

needn't trust 100+ third parties for your internal systems' security. You can issue

certificates with internal hostnames, with any lifetime you'd like, using any key type,

and you don't have to worry about public Web PKI threats like rate limits, China, or the

NSA.

Still, we were afraid we might ruffle feathers with this announcement, so we reached

out to Let's Encrypt a few weeks ago to give them a preview. Turns out we had nothing

to worry about. They responded enthusiastically. We ended up becoming sponsors, and

now we have some new friends!

“"We developed the ACME protocol to encourage automation in PKI. It is exciting to see

others prioritizing automation in security as well."

-- Josh Aas, Executive Director, Let's Encrypt/ISRG We're excited too!”

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 3/29

https://letsencrypt.org/docs/client-options/
https://letsencrypt.org/docs/staging-environment/
https://smallstep.com/blog/everything-pki.html#trustworthiness
https://cabforum.org/internal-names/
https://www.zdnet.com/article/google-wants-to-reduce-lifespan-for-https-certificates-to-one-year/
https://letsencrypt.org/docs/rate-limits/
https://en.wikipedia.org/wiki/StartCom
https://www.eff.org/deeplinks/2019/02/cyber-mercenary-groups-shouldnt-be-trusted-your-browser-or-anywhere-else
https://en.wikipedia.org/wiki/DigiNotar
https://twitter.com/0xjosh

At a high level, ACME is pretty simple. An ACME client creates an account with an ACME

server and submits a certificate order. The server responds with a set of challenges for

the client to complete, to prove control over identifiers (domain names) in the

certificate. Once the client successfully completes these challenges, it submits a

certificate signing request (CSR) and the server issues a certificate.

The most interesting part of all of this is the challenge -- where the client proves control

over an identifier. There is no single standard way to "prove control" over an

"identifier", so the core ACME specification makes this an extension point. That said,

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 4/29

there are only two challenge types broadly used in practice. Both are designed to prove

control over a domain name, and both are supported by step-ca :

The HTTP Challenge (technically, http-01), in which the ACME server challenges

the client to host a random number at a random URL on the domain in question

and verifies client control by issuing an HTTP GET request to that URL

The DNS Challenge (technically, dns-01), in which the ACME server challenges the

client to provision a random DNS TXT record for the domain in question and

verifies client control by querying DNS for that TXT record

That should be enough background to understand what's going on, configure, debug,

and operate ACME clients. Now let's try out ACME with step-ca or Smallstep

Certificate Manager.

Join our Solutions Engineering team as they show you how to get started using ACME in

under three minutes with Smallstep Certificate Manager - all right in the product UI.

You can sign up and get started here.

Let's assume you've installed step-ca (e.g., using brew install step), have it

running at https://ca.internal , and you've bootstrapped your ACME client

system(s) (or at least installed your root certificate at ~/.step/certs/root_ca.crt).

To enable ACME, simply add an ACME provisioner to your step-ca configuration by

running:

Using ACME with Smallstep Certificate

Manager

Using ACME with step-ca

ENABLING ACME

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 5/29

https://youtu.be/ODtpflra_Yo
https://youtu.be/ODtpflra_Yo
https://smallstep.com/signup?product=cm
https://smallstep.com/docs/getting-started/#1-installing-step-and-step-ca
https://smallstep.com/docs/getting-started/#bootstrapping
https://smallstep.com/docs/getting-started/#bootstrapping
https://smallstep.com/docs/cli/ca/root/
https://smallstep.com/docs/cli/ca/provisioner/add/
https://smallstep.com/docs/cli/ca/provisioner/add/

Now restart step-ca to pick up the new configuration.

🏌️‍that's it.

To configure an ACME client to connect to step-ca you need to:

1. Point the client at the right ACME directory URL

2. Tell the client to trust your CA's root certificate

Once certificates are issued, you’ll also need to ensure they're renewed before they

expire.

Most ACME clients connect to Let's Encrypt's CA by default. To connect to step-ca you

need to point the client at the right ACME directory URL.

A single instance of step-ca can have multiple ACME provisioners, each with their

own ACME directory URL that looks like:

We just added an ACME provisioner named "acme". Its ACME directory URL is:

 step ca provisioner add acme --type ACME

CONFIGURING CLIENTS

Pointing clients at the right ACME Directory URL

 https://{ca-host}/acme/{provisioner-name}/directory

 https://ca.internal/acme/acme/directory

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 6/29

https://tools.ietf.org/html/rfc8555#section-7.1.1

Communication between an ACME client and server always uses HTTPS. By default,

client's will validate the server's HTTPS certificate using the public root certificates in

your system's default trust store. That's fine when you're connecting to Let's Encrypt:

it's a public CA and its root certificate is in your system's default trust store already.

Your internal root certificate isn't, so HTTPS connections from ACME clients to step-

ca will fail.

There are two ways to address this problem:

1. Explicitly configure your ACME client to trust step-ca 's root certificate, or

2. Add step-ca 's root certificate to your system's default trust store (e.g., using

step certificate install)

If you're using your CA for TLS in production, explicitly configuring your ACME client to

only trust your root certificate is a better option. We'll demonstrate this method with

several clients below.

If you're simulating Let's Encrypt in pre-production, installing your root certificate is a

more faithful simulation of production. Once your root certificate is installed, no

additional client configuration is necessary.

“Caution: adding a root certificate to your system's trust store is a global operation.

Certificates issued by your CA will be trusted everywhere, including in web browsers.”

step-ca should work with any ACMEv2 (RFC8555) compliant client that supports the

http-01 , dns-01 , or tls-alpn-01 challenge. If you run into any issues please start

a discussion or open an issue.

Let's look at some examples.

Telling clients to trust your CA's root certificate

Examples

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 7/29

https://tools.ietf.org/html/rfc8555#section-6.1
https://smallstep.com/blog/everything-pki.html#trust-stores
https://smallstep.com/docs/cli/certificate/install/
https://tools.ietf.org/html/rfc8555
https://github.com/smallstep/certificates/discussions
https://github.com/smallstep/certificates/discussions
https://github.com/smallstep/certificates/issues/new?template=bug_report.md

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. certbot is the grandaddy of ACME clients. Built and supported

by the EFF, it's the standard-bearer for production-grade command-line ACME.”

To get a certificate from step-ca using certbot you need to:

1. Point certbot at your ACME directory URL using the --server flag

2. Tell certbot to trust your root certificate using the REQUESTS_CA_BUNDLE

environment variable

For example:

sudo is required in certbot 's standalone mode so it can listen on port 80 to

complete the http-01 challenge. If you already have a webserver running you can use

webroot mode instead. With the appropriate plugin certbot also supports the dns-

01 challenge for most popular DNS providers. Deeper integrations with nginx and

apache can even configure your server to use HTTPS automatically (we'll set this up

ourselves later). All of this works with step-ca .

You can renew all of the certificates you've installed using cerbot by running:

You can automate renewal with a simple cron entry:

 $ sudo REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt \
 certbot certonly -n --standalone -d foo.internal \
 --server https://ca.internal/acme/acme/directory

 $ sudo REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt certbot rene

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 8/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://certbot.eff.org/
https://www.eff.org/
https://certbot.eff.org/docs/using.html#standalone
https://certbot.eff.org/docs/using.html#standalone
https://certbot.eff.org/docs/using.html#webroot
https://certbot.eff.org/docs/using.html#webroot
https://certbot.eff.org/docs/using.html#dns-plugins
https://certbot.eff.org/docs/using.html#nginx
https://certbot.eff.org/docs/using.html#apache

The certbot packages for some Linux distributions will create a cron entry or

systemd timer like this for you. This entry won't work with step-ca because it doesn't

set the REQUESTS_CA_BUNDLE environment variable. You'll need to manually tweak it to

do so.

More subtly, certbot 's default renewal job is tuned for Let's Encrypt's 90 day

certificate lifetimes: it's run every 12 hours, with actual renewals occurring for

certificates within 30 days of expiry. By default, step-ca issues certificates with much

shorter 24 hour lifetimes. The cron entry above accounts for this by running certbot

renew every 15 minutes. You'll also want to configure your domain to only renew

certificates when they're within a few hours of expiry by adding a line like:

to the top of your renewal configuration (e.g., in

/etc/letsencrypt/renewal/foo.internal.conf).

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. acme.sh is another popular command-line ACME client. It's

written completely in shell (bash , dash , and sh compatible) with very few

dependencies.”

To get a certificate from step-ca using acme.sh you need to:

1. Point acme.sh at your ACME directory URL using the --server flag

2. Tell acme.sh to trust your root certificate using the --ca-bundle flag

 */15 * * * * root REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt c

 renew_before_expiry = 8 hours

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 9/29

https://stevenwestmoreland.com/2017/11/renewing-certbot-certificates-using-a-systemd-timer.html
https://github.com/certbot/certbot/issues/7170
https://github.com/certbot/certbot/issues/7170
https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/Neilpang/acme.sh

For example:

Like certbot , acme.sh can solve the http-01 challenge in standalone mode and

webroot mode. It can also solve the dns-01 challenge for many DNS providers.

Renewals are slightly easier since acme.sh remembers to use the right root certificate.

It can also remember how long you'd like to wait before renewing a certificate.

Unfortunately, the duration is specified in days (via the --days flag) which is too

coarse for step-ca 's default 24 hour certificate lifetimes. So the easiest way to

schedule renewals with acme.sh is to force them at a reasonable frequency, like every

8 hours, via cron:

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. step is a versatile security utility that can replace openssl

for most certificate management tasks. It's also a step-ca client. With today's release

(v0.13.0), we've added ACME to the list of ways step can get certificates from step-

ca . ACME support also means step can get certificates from other ACME CAs, like Let's

Encrypt's.”

 $ sudo acme.sh --issue --standalone -d foo.internal \
 --server https://ca.internal/acme/acme/directory \
 --ca-bundle $(step path)/certs/root_ca.crt \
 --fullchain-file foo.crt \
 --key-file foo.key

 0 */8 * * * root "/home/<user>/.acme.sh"/acme.sh --cron --home "/home

Getting certificates from step-ca

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 10/29

https://github.com/Neilpang/acme.sh#4-use-standalone-server-to-issue-cert
https://github.com/Neilpang/acme.sh#4-use-standalone-server-to-issue-cert
https://github.com/Neilpang/acme.sh#2-just-issue-a-cert
https://github.com/Neilpang/acme.sh#2-just-issue-a-cert
https://github.com/Neilpang/acme.sh/wiki/dnsapi
https://github.com/Neilpang/acme.sh/issues/2422
https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/smallstep/cli
https://smallstep.com/docs/step-ca/certificate-authority-core-concepts#provisioners

Once you've installed step and bootstrapped your environment you can get a

certificate from step-ca by running the step ca certificate subcommand and

selecting your ACME provisioner interactively:

Or non-interactively, by specifying your ACME provisioner's name with the --

provisioner flag:

You can renew any certificate issued by step-ca using step ca renew :

 $ sudo step ca certificate foo.internal foo.crt foo.key
 Use the arrow keys to navigate: ↓ ↑ → ←
 What provisioner key do you want to use?
 ▸ acme (ACME)

 ✔ Provisioner: acme (ACME)
 Using Standalone Mode HTTP challenge to validate foo.internal .. done
 Waiting for Order to be 'ready' for finalization .. done!
 Finalizing Order .. done!
 ✔ Certificate: foo.crt
 ✔ Private Key: foo.key

 $ sudo step ca certificate foo.internal foo.crt foo.key --provisioner

Automating renewals

 $ step ca renew bar.crt bar.key --force

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 11/29

https://smallstep.com/docs/getting-started/
https://smallstep.com/docs/getting-started/#bootstrapping
https://smallstep.com/docs/cli/ca/certificate/

You can run step ca renew via cron , but a better option is to run step in --

daemon mode under a process supervisor like systemd to keep it running:

Start the service:

And tell systemd to restart it on reboot:

 $ cat <<EOF | sudo tee /etc/systemd/system/step.service > /dev/null
 [Unit]
 Description=Automated certificate management
 After=network.target
 StartLimitIntervalSec=0

 [Service]
 Type=simple
 Restart=always
 RestartSec=1
 User=mmalone
 ExecStart=/usr/bin/step ca renew --daemon /home/mmalone/foo.crt /home

 [Install]
 WantedBy=multi-user.target
 EOF

 $ sudo systemctl start step

 $ sudo systemctl enable step

Getting certificates from Let's Encrypt

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 12/29

https://medium.com/@benmorel/creating-a-linux-service-with-systemd-611b5c8b91d6

Unlike other ACME clients, step connects to step-ca by default. To get a certificate

from Let's Encrypt's CA we need to tell step to use Let's Encrypt's ACME directory

URL:

step ca certificate only supports the http-01 challenge. Like certbot and

acme.sh , it can operate in standalone mode or webroot mode.

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. Caddy is an HTTP/2 web server with automatic HTTPS powered

by an integrated ACME client. In addition to serving static websites, Caddy is commonly

used as a TLS-terminating API gateway proxy. It's super easy to use, and secure by

default.”

Caddy v2 ships with an embedded ACME server that uses smallstep's open source

libraries to issue certificates for internal and local addresses.

To get a certificate from step-ca to Caddy you need to:

1. Point Caddy at your ACME directory URL using the tls.ca directive in your

Caddyfile

2. Tell Caddy to trust your root certificate using the LEGO_CA_CERTIFICATES

environment variable

To demonstrate, create a Caddyfile that looks something like:

 $ sudo step ca certificate acme.step.toys acme.crt acme.key \
 --acme https://acme-v02.api.letsencrypt.org/directory

Caddy v2

Caddy v1

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 13/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://caddyserver.com/
https://caddyserver.com/docs/proxy
https://caddyserver.com/v2
https://caddyserver.com/docs/tls
https://caddyserver.com/tutorial/caddyfile
https://github.com/go-acme/lego/blob/bc4b57accc090b9c61bde051c99fcb14e952f6e6/lego/client_config.go#L18-L28
https://github.com/go-acme/lego/blob/bc4b57accc090b9c61bde051c99fcb14e952f6e6/lego/client_config.go#L18-L28

In the same directory, set the LEGO_CA_CERTIFICATES environment variable and run

caddy to start serving HTTPS!

We can check our work with curl :

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. Nginx doesn't support ACME natively, but you can use a

command-line ACME client to get certificates for Nginx to use.”

Here's an example nginx.conf that runs Nginx in a common configuration:

terminating TLS and proxying to a backend server listening on local loopback:

 foo.internal {
 root /var/run/www
 tls mike@example.com {
 ca https://ca.internal/acme/acme/directory
 }
 }

 $ LEGO_CA_CERTIFICATES=$(step path)/certs/root_ca.crt caddy

 $ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt
 Hello, TLS!

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 14/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://www.nginx.com/

There's nothing magic here. We're just telling nginx to listen on port 443 using TLS, with

a certificate and private key stored on disk. Other resources provide a more thorough

explanation of Nginx's various TLS configuration options.

We can start an HTTP server using python and check our work with curl :

Nginx only reads certificates once, at startup. When you renew the certificate on disk,

Nginx won't notice. Therefore, after each renewal you'll need to run nginx -s reload .

You can use the --exec flag to step ca renew to do this automatically:

 server {
 listen 443 ssl;
 server_name foo.internal;

 ssl_certificate /path/to/foo.crt;
 ssl_certificate_key /path/to/foo.key;

 location / {
 proxy_pass http://127.0.0.1:8000
 }
 }

 $ echo "Hello TLS!" > index.html
 $ python -m SimpleHTTPServer 8000 &
 $ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt
 Hello TLS!

 $ step ca renew --daemon --exec "nginx -s reload" \
 /path/to/foo.crt \
 /path/to/foo.key

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 15/29

https://medium.com/@mvuksano/how-to-properly-configure-your-nginx-for-tls-564651438fe0
https://medium.com/@pentacent/nginx-and-lets-encrypt-with-docker-in-less-than-5-minutes-b4b8a60d3a71

If you're using certbot check out the --post-hook flag to do the same thing. If

you're using acme.sh check out --reloadcmd .

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. Apache httpd has integrated ACME support via mod_md . The

v1.x.x releases only work with ACMEv1. The v2.x.x releases do support ACMEv2 but,

unfortunately, I had trouble getting mod_md working with step-ca in time for this

post. For now, we can deploy certificates to Apache the same way we did for Nginx: by

using a command-line ACME client, configuring Apache to load a certificate and key from

disk, and signaling the server after certificate renewals.”

Here's an example Apache configuration, using certificates issued by step-ca using

certbot :

Start Apache and check our work with curl :

Like Nginx, Apache needs to be signaled after certificates are renewed by running

apachectl graceful .

 <VirtualHost *:443>
 ServerName foo.internal
 DocumentRoot /home/mmalone/www
 SSLEngine on
 SSLCertificateFile /etc/letsencrypt/live/foo.internal/fullchain.p
 SSLCertificateKeyFile /etc/letsencrypt/live/foo.internal/privkey
 </VirtualHost>

 $ curl --cacert $(step path)/certs/root_ca.crt https://foo.internal
 Hello TLS

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 16/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/icing/mod_md
https://github.com/icing/mod_md/wiki/V2Design
https://icing.github.io/mod_md/acmev2.html
https://github.com/icing/mod_md/#versions-and-releases

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. Traefik is a modern reverse-proxy with integrated support for

ACME. It's designed primarily to handle ingress for a compute cluster, dynamically routing

traffic to microservices and web applications.”

To get a certificate from step-ca to Traefik you need to:

1. Point Traefik at your ACME directory URL using the caServer directive in your

configuration file

2. Tell Traefik to trust your root certificate using the LEGO_CA_CERTIFICATES

environment variable

Here's an example traefik.toml file that configures Traefik to terminate TLS and

proxy to a service listening on localhost:

 defaultEntryPoints = ["http", "https"]

 [entryPoints]
 [entryPoints.http]
 address = ":80"
 [entryPoints.https]
 address = ":443"
 [entryPoints.https.tls]

 [acme]

 storage = "acme.json"
 caServer = "https://ca.internal/acme/acme/directory"
 entryPoint = "https"

 [acme.httpChallenge]
 entryPoint = "http"

 [[acme.domains]]
 main = "foo.internal"

 [file]

 [frontends]
 [frontends.foo]

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 17/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://traefik.io/
https://docs.traefik.io/configuration/acme/#caserver
https://docs.traefik.io/basics/#configuration-file
https://github.com/containous/traefik/issues/5196
https://github.com/containous/traefik/issues/5196

Start Traefik by running:

Start an HTTP server for Traefik to proxy to, and test with curl :

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. lego is an ACME client library written in Go. You can use it to

obtain a certificate from step-ca programmatically. A complete production-grade

example is too long to embed in this post, but here's a gist. The bits that are most relevant

to our discussion are where we:”

1. Point lego at your ACME directory URL by setting lego.Config.CADirUrl

2. Tell lego to trust your CA by configuring an http.Client that trusts your root

certificate and telling lego to use it

 backend = "foo"

 [backends]
 [backends.foo]
 [backends.foo.servers.server0]
 url = "http://127.0.0.1:8000"

 $ LEGO_CA_CERTIFICATES=$(step path)/certs/root_ca.crt traefik

 $ echo "Hello TLS!" > index.html
 $ python -m SimpleHTTPServer 8000 &
 $ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt
 Hello TLS!

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 18/29

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/go-acme/lego
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L141
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L63-L84
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L47-L61
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L47-L61
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L143

Fetch the required dependencies and start the server:

Then test with curl :

The server is configured to verify client certificates if they're sent (i.e., it's configured to

support mutual TLS). The handler checks whether a client certificate was provided, and

responds with a personalized greeting if one was.

We can grab a client certificate from step-ca using an OAuth/OIDC provisioner:

And test mutual TLS out with curl :

 $ go get golang.org/x/net/http2
 $ go get github.com/go-acme/lego
 $ go run acme.go

 $ curl https://foo.internal:5443 --cacert $(step path)/certs/root_ca
 Hello, TLS!

 $ step ca certificate mike@example.com mike.crt mike.key
 ✔ Provisioner: Google (OIDC) [client: <redacted>.apps.googleuserconte
 ✔ CA: https://ca.internal
 ✔ Certificate: mike.crt
 ✔ Private Key: mike.key

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 19/29

https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L286-L288
https://gist.github.com/mmalone/abce3c30df96972ed47f3298543be345#file-acme-go-L257-L264
https://smallstep.com/blog/easily-curl-services-secured-by-https-tls.html

With a few tweaks to this code you can implement robust access control.

There are other good options for programmatic ACME in Go. The certmagic package

builds on lego and offers higher level, easier to use abstractions. The

x/crypto/acme package is lower level and offers more control, but it currently

implements a pre-standardization draft version of ACME that doesn't work with step-

ca .

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. certbot is written in Python and exposes its acme module as

a standalone package (API docs). Here's an example of how to use it to obtain a certificate

and serve HTTPS in pure Python.”

The interesting parts are where we:

1. Point the ACME client at your ACME directory URL

2. Tell the ACME client to trust your CA by configuring the injected HTTP client to

verify certificates using your root certificate

To install dependencies and start the server run:

 $ curl https://foo.internal:5443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \
 --key mike.key
 Hello, mike@example.com!

 $ pip install acme
 $ pip install pem
 $ python https.py

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 20/29

https://github.com/mholt/certmagic
https://godoc.org/golang.org/x/crypto/acme
https://github.com/golang/go/issues/33229
https://github.com/golang/go/issues/33229
https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/certbot/certbot/tree/master/acme
https://pypi.org/project/acme/
https://letsencrypt.readthedocs.io/projects/acme/en/stable/
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L153-L154
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L45-L46
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L152
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L48-L49

Then check your work with curl :

Like the Go example above, this server also supports optional client authentication

using certificates (i.e., mutual TLS) and checks if the client authenticated in the handler:

“This example was accurate at time of publication. Please see this tutorial for current

ACME client instructions. For Node.js, Publish Lab's acme-client is an excellent ACMEv2

client that's very easy to use. Here's an example of how to use it to obtain a certificate and

serve HTTPS in pure javascript.”

The interesting parts are where we:

1. Point the ACME client at your ACME directory URL

2. Tell the ACME client to trust your CA by configuring the HTTP client to verify

certificates using your root certificate

To install dependencies and start the server run:

 $ curl https://foo.internal:10443 --cacert $(step path)/certs/root_ca
 Hello, TLS!

 $ curl https://foo.internal:10443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \
 --key mike.key
 Hello, mike@smallstep.com!

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 21/29

https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L186-L191
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d#file-https-py-L136-L141
https://smallstep.com/docs/tutorials/acme-protocol-acme-clients
https://github.com/publishlab/node-acme-client
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L89-L92
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L10
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L15-L20
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L11

Then check your work with curl :

Once again, this server supports optional client authentication using certificates and

checks if the client authenticated in the handler:

This post is long, but it's far from exhaustive. Lots of stuff works with ACME. There are

modules for Ansible, Puppet, Chef, and Terraform (example & more info).

For Kubernetes you can install step-ca using helm and use cert-manager along with

one of the many ingress controllers that support TLS. Ingresses are typically used to

proxy web and API traffic from the public internet, often using certificates from Let's

Encrypt. You can use step-ca to simulate this setup locally. You can also configure an

ingress to use mutual TLS in production, with certificates from step-ca , to secure

service-to-service traffic into, out of, and between Kubernetes clusters without a VPN or

SDN.

 $ npm install node-acme-client
 $ node acme.js

 $ curl https://foo.internal:11443 \
 --cacert $(step path)/certs/root_ca.crt
 Hello, TLS

 $ curl https://foo.internal:11443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \
 --key mike.key
 Hello, mike@smallstep.com

KUBERNETES, DATABASES, QUEUES, CONFIG MANAGEMENT, AND MORE...

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 22/29

https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L111-L112
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9#file-acme-js-L121-L133
https://letsencrypt.org/docs/client-options/
https://docs.ansible.com/ansible/latest/modules/acme_certificate_module.html
https://forge.puppet.com/puppet/letsencrypt
https://github.com/schubergphilis/chef-acme
https://www.terraform.io/docs/providers/acme/index.html
https://gist.github.com/mmalone/881b638fa0d71b03e9e082b05f0f5b38
https://opencredo.com/blogs/letsencrypt-terraform/
https://hub.helm.sh/charts/smallstep/step-certificates
https://github.com/jetstack/cert-manager
https://www.getambassador.io/
https://github.com/heptio/contour
https://github.com/containous/traefik
https://www.nginx.com/products/nginx/kubernetes-ingress-controller
https://github.com/Kong/kubernetes-ingress-controller
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/#additional-controllers
https://medium.com/@awkwardferny/configuring-certificate-based-mutual-authentication-with-kubernetes-ingress-nginx-20e7e38fdfca
https://medium.com/@awkwardferny/configuring-certificate-based-mutual-authentication-with-kubernetes-ingress-nginx-20e7e38fdfca
https://medium.com/@awkwardferny/configuring-certificate-based-mutual-authentication-with-kubernetes-ingress-nginx-20e7e38fdfca
https://medium.com/@awkwardferny/configuring-certificate-based-mutual-authentication-with-kubernetes-ingress-nginx-20e7e38fdfca

ACME support is widespread, but even more stuff can be configured to use certificates,

improving security and reducing your secrets management burden. PostgreSQL,

MySQL, Cassandra, CockroachDB, Redis, RabbitMQ, Kafka, gRPC -- pretty much

everything -- can be configured to use mutual TLS for encryption and authentication

instead of using insecure connections and shared secrets. All you need is an internal CA

powered by step-ca and any command line ACME client to issue certificates.

As a final demonstration, let's simulate Let's Encrypt locally with a new ACME

provisioner named "fake-le".

We'll have to manually edit $(step path)/config/ca.json to add the provisioner and

override step-ca 's default 24 hour certificate lifetime to match Let's Encrypt's 90 days

(2160 hours):

Next, let's add our root certificate to our system's trust store:

Local Development & Pre-Production

 "provisioners": {
 ...
 {
 "type": "acme",
 "name": "fake-le",
 "claims": {
 "maxTLSCertDuration": "2160h",
 "defaultTLSCertDuration": "2160h"
 }
 },
 ...
 }

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 23/29

https://smallstep.com/blog/use-tls.html
https://smallstep.com/blog/use-tls.html
https://www.postgresql.org/docs/current/ssl-tcp.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://docs.datastax.com/en/security/6.7/security/secSslTOC.html
https://www.cockroachlabs.com/docs/stable/create-security-certificates-custom-ca.html
https://docs.redislabs.com/latest/rs/administering/designing-production/security/client-connections/
https://www.rabbitmq.com/ssl.html
https://docs.confluent.io/current/kafka/authentication_ssl.html
https://grpc.io/docs/guides/auth/
https://github.com/smallstep/certificates/blob/master/docs/GETTING_STARTED.md#use-custom-claims-for-provisioners-to-control-certificate-validity-etc

With our root certificate installed and certificate lifetimes matching Let's Encrypt's, you

can use any ACME client to get certificates from step-ca by simply changing the ACME

directory URL -- just like you would for Let's Encrypt's staging environment.

Root certificate installation means other TLS clients will also trust certificates issued by

step-ca . You won't need --cacert with curl and you won't get certificate

warnings in your browser. Certificates issues by step-ca will work exactly like

certificates from Let’s Encrypt on any system with your root certificate installed.

If you want to connect from another machine, you'll need to install your root certificate

there, too. You can use step ca root or step ca bootstrap to help with this.

Keep in mind that certificate installation is a global operation: certificates issued by your

CA will be trusted by your browser and lots of other stuff running on your system. You

should only install a root certificate if you actually trust the CA (and the person running

it). You can uninstall a root certificate when you're not using it to mitigate this risk:

 sudo step certificate install $(step path)/certs/root_ca.crt

 sudo step certificate uninstall $(step path)/certs/root_ca.crt

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 24/29

https://letsencrypt.org/docs/staging-environment/
https://smallstep.com/docs/cli/certificate/install/
https://smallstep.com/docs/cli/ca/root/
https://smallstep.com/docs/cli/ca/bootstrap/

ACME support in step-ca is a game changer. It's great for testing. More importantly,

step-ca and ACME make running your own CA and getting certificates issued so easy

that using TLS should be a no-brainer for tons of production use cases.

Give it a try in open source, and don't be shy about those GitHub stars (our investors

love them):

Alternatively, you can start using ACME right now with Smallstep Certificate Manager -

it's free for a single user and you can get your first TLS certificate in less than three

minutes.

Subscribe to updates
Unsubscribe anytime, see Privacy Policy

Your email

ACME Production Identity Technical

Further Reading

 Star smallstep/cli 3,803 Star smallstep/certificates 7,123

21.03.25, 20:18 Run your own private CA & ACME server using step-ca

https://smallstep.com/blog/private-acme-server/ 25/29

https://smallstep.com/docs/tutorials/acme-challenge
https://smallstep.com/signup?product=cm
https://smallstep.com/privacy-policy/
https://smallstep.com/tags/acme/
https://smallstep.com/tags/production-identity/
https://smallstep.com/tags/technical/
https://github.com/smallstep/cli
https://github.com/smallstep/cli/stargazers
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates/stargazers

