
Integrate Kubernetes cert-manager with an

internal ACME CA

About this tutorial

In this example, we'll configure Kubernetes cert-manager to get a certificate from an

internal ACME server, using cert-manager's ACME issuer.

Estimated effort: Reading time ~4 mins, Lab time ~20 to 60 mins.

If you run into any issues please let us know in GitHub Discussions.

Requirements

Open source - You have initialized and started up a step-ca ACME instance using

the steps in our ACME server tutorial.

Smallstep Certificate Manager - this tutorial assumes you have created a hosted

or linked authority and created an ACME provisioner with External Account Binding

enabled.

You'll need the root certificate PEM file for your CA.

0. BEFORE YOU BEGIN

This example uses the ACME dns-01 challenge type, with Google Cloud DNS. We'll

create a service account on Google Cloud that cert-manager will use to solve DNS

challenges. For other DNS providers, or other ACME challenge types, you'll need to

change the challenge solver settings below.

1. CREATE A KUBERNETES CLUSTER

Docs Menu

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 1/7

https://cert-manager.io/
https://cert-manager.io/docs/configuration/acme/
https://github.com/smallstep/certificates/discussions
https://smallstep.com/docs/step-ca/acme-basics/
https://smallstep.com/certificate-manager
https://smallstep.com/docs/certificate-manager/getting-started/
https://smallstep.com/docs/certificate-manager/getting-started/
https://console.cloud.google.com/net-services/dns/
https://smallstep.com/

For this tutorial, I created a Google Compute Engine VM running a kind cluster. I'm using

kind for testing, but pretty much any Kubernetes cluster will do.

2. INSTALL CERT-MANAGER

Let's install Kubernetes cert-manager

First, install cert-manager:

3. CONFIGURE A CHALLENGE SOLVER

Not using Google Cloud Platform? You can skip this step and configure the cert-

manager Issuer in step 4 to use a different challenge solver. See cert-manager's

documentation for http-01 and dns-01 solvers.

We're going to have cert-manager solve dns-01 ACME challenges against a public

Google Cloud Platform DNS zone. For this, we're going to create a Google Cloud

Platform service account and import its credentials. The service account will need

permission to manage DNS entries.

Let's create a Google Cloud Platform service account with the roles/dns.admin role.

Replace the PROJECT_ID here with your own:

Now import the service account's credentials as a Kubernetes secret:

$ kind create cluster

$ kubectl apply --validate=false -f https://github.com/jetstack/cert-manager

$ export PROJECT_ID=step-lan
$ gcloud iam service-accounts create dns01-solver \
 --project $PROJECT_ID --display-name "dns01-solver"
$ gcloud projects add-iam-policy-binding $PROJECT_ID \
 --member serviceAccount:dns01-solver@$PROJECT_ID.iam.gserviceaccount.com
 --role roles/dns.admin

$ gcloud iam service-accounts keys create key.json \
 --iam-account dns01-solver@$PROJECT_ID.iam.gserviceaccount.com

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 2/7

https://kind.sigs.k8s.io/
https://cert-manager.io/
https://cert-manager.io/docs/configuration/acme/http01/
https://cert-manager.io/docs/configuration/acme/dns01/

4. CREATE THE CERT-MANAGER ISSUER

Finally, let's create an cert-manager Issuer to perform dns-01 ACME challenges. For

this, we'll need a base64-encoded PEM file containing ACME server's CA certificate:

Make a new file called acme-issuer.yaml :

Replace the values for email , server URL, caBundle , project and

hostedZoneName with your own. Your Smallstep ACME endpoint typically takes the

form of https://[your CA hostname]/acme/acme/directory .

Optional: Enabling ACME External Account Binding (EAB)

Smallstep Certificate Manager uses ACME External Account Binding (EAB). When you get

an EAB key from Smallstep, you'll need to convert it to base64URL before creating a

$ kubectl create secret generic clouddns-dns01-solver-svc-acct \
 --from-file=key.json

ROOT_CA=$(step ca root | base64)

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: acme-issuer
spec:
 acme:
 email: carl@smallstep.com
 server: https://example.ca.smallstep.com/acme/acme/directory
 caBundle: LS0tLS1DRUdJTiBDRVJUSUZJEXAMPLE2UE11OWN4ckRNYWpQTlRTbkxCcEkxd1
 privateKeySecretRef:
 name: acme-issuer-account-key
 solvers:
 - dns01:
 cloudDNS:
 # Your Google Cloud Platform project ID:
 project: step-gcp-test
 # Your Google CloudDNS zone name we will use for DNS01 challenges:
 hostedZoneName: step-public-zone
 serviceAccountSecretRef:
 name: clouddns-dns01-solver-svc-acct
 key: key.json

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 3/7

Kubernetes secret for it:

Output:

Add this secret to Kubernetes:

Next, see cert-manager's documentation for details on configure your EAB key and

secret in your Issuer .

5. APPLY YOUR ISSUER

Finally, apply your Issuer configuration:

You now have an automated ACME certificate manager running inside your Kubernetes

cluster.

6. ISSUE A TEST CERTIFICATE

Let's get a test certificate from our ACME CA, using a Certificate object. Create a file

called tls-certificate.yaml :

echo 'yEZNEXAMPLEnu43wV/LNZYjL3ezwnd+GOd01TaID0EE=' | sed -e 's/+/-/g' -e 's

yEZNEXAMPLEnu43wV_LNZYjL3ezwnd-GOd01TaID0EE

kubectl create secret generic eab-secret --from-literal \
 secret=yEZNEXAMPLEnu43wV_LNZYjL3ezwnd-GOd01TaID0EE

$ kubectl apply -f acme-issuer.yaml

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: k8s-internal
 namespace: default
spec:
 secretName: k8s-internal-tls
 issuerRef:
 name: acme-issuer

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 4/7

https://cert-manager.io/docs/configuration/acme/#external-account-bindings

Replace the dnsNames value with a DNS name that's inside your zone.

Apply it:

You can check the status with kubectl get certificaterequest or kubectl

describe certificate :

 dnsNames:
 - k8s.smallstep.internal

$ kubectl apply -f tls-certificate.yaml

$ kubectl get certificaterequest
NAME READY AGE
k8s-internal-nzbnm True 7s
$ kubectl describe certificate k8s-internal
Name: k8s-internal
Namespace: default
...
Kind: Certificate
Metadata:
 Creation Timestamp: 2020-11-03T23:06:46Z
...
Spec:
 Dns Names:
 k8s.smallstep.internal
 Issuer Ref:
 Name: acme-issuer
 Secret Name: k8s-internal-tls
Status:
 Conditions:
 Last Transition Time: 2020-11-03T23:11:01Z
 Message: Certificate is up to date and has not expired
 Reason: Ready
 Status: True
 Type: Ready
 Not After: 2020-11-04T23:11:01Z
 Not Before: 2020-11-03T23:11:01Z
 Renewal Time: 2020-11-04T15:11:01Z
 Revision: 1
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Issuing 10m cert-manager Issuing certificate as Secret does
 Normal Generated 10m cert-manager Stored new private key in temporary

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 5/7

Subscribe to updates

Your email

Learn

Blog

Try for free

Register for demo

Products

Certificate Manager

Smallstep SSH

ACME Registration Authority

Integrations

Documentation

Certificate Manager

Smallstep SSH

As you can see, cert-manager will automatically renew the certificate when

approximately 2/3 of its lifetime has elapsed.

That's it! You now have automated, short-lived certificates for your Kubernetes cluster.

There are many use cases for X.509 certificates issued through cert-manager.

 Normal Requested 10m cert-manager Created new CertificateRequest res
 Normal Issuing 9m33s cert-manager The certificate has been successfu

Unsubscribe anytime, see Privacy Policy

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 6/7

https://twitter.com/smallsteplabs
https://twitter.com/smallsteplabs
https://www.linkedin.com/company/smallstep
https://www.linkedin.com/company/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://bit.ly/step-discord
https://bit.ly/step-discord
https://smallstep.com/blog/
https://smallstep.com/signup/
https://go.smallstep.com/request-demo
https://smallstep.com/certificate-manager/
https://smallstep.com/solutions/smallstep-ssh/
https://smallstep.com/acme-registration-authority/
https://smallstep.com/integrations/
https://smallstep.com/docs/certificate-manager/
https://smallstep.com/docs/ssh/
https://cert-manager.io/docs/usage/

step-ca

Tutorials

Step command reference

Open Source

step-ca

Step CLI

About

About

Support

Status

Careers

Privacy

Terms of use

Privacy Policy

Privacy Center

Security

© 2025 Smallstep Labs, Inc. All rights reserved

21.03.25, 21:17 Integrate Kubernetes cert-manager with an internal ACME CA

https://smallstep.com/docs/tutorials/kubernetes-acme-ca/ 7/7

https://smallstep.com/docs/step-ca/
https://smallstep.com/docs/tutorials/
https://smallstep.com/docs/step-cli/reference/
https://smallstep.com/certificates/
https://smallstep.com/cli/
https://smallstep.com/about/
https://support.smallstep.com/
https://status.smallstep.com/
https://jobs.ashbyhq.com/smallstep
https://smallstep.com/terms-of-use/
https://smallstep.com/privacy-policy/
https://smallstep.com/security/

