
Getting Started with Raspberry Pi Pico
and CircuitPython

Created by Kattni Rembor

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython

Last updated on 2025-03-04 10:16:50 AM EST

©Adafruit Industries Page 1 of 92

5

11

14

17

19

21

23

25

31

37

48

Table of Contents

Overview
• Other Required Hardware

Pinouts
• No Basic Default board Devices
• The board.STEMMA_I2C() Object
• Power Sensing Pins Available in CircuitPython

Using Adafruit AR with Raspberry Pi Pico
• To get started:

MicroPython or CircuitPython?
• CircuitPython is a 'fork' based on MicroPython
• So what's different?
• Why Use MicroPython?
• It's great to know both!
• To get started quick:

What is CircuitPython?
• CircuitPython is based on Python
• Why would I use CircuitPython?

Installing CircuitPython
• CircuitPython Quickstart
• Flash Resetting UF2

Installing the Mu Editor
• Download and Install Mu
• Starting Up Mu
• Using Mu

CircuitPython Programming Basics
• Indentation and Code Loops
• Conditionals and Variables

CircuitPython Pins and Modules
• CircuitPython Pins
• import board
• I2C, SPI, and UART
• What Are All the Available Names?
• Microcontroller Pin Names
• CircuitPython Built-In Modules

Blinky and a Button
• The Built-In LED
• An External LED
• Using a Button as an Input
• Control an External LED with a Button

Traffic Light and Pedestrian Crossing
• Parts Used
• Wiring the Traffic Light

©Adafruit Industries Page 2 of 92

56

62

73

79

80

84

91

91

91

• Programming the Traffic Light
• Traffic Light and Pedestrian Crossing
• Wiring the Pedestrian Crossing
• Programming the Traffic Light and Pedestrian Crossing

Reaction Game
• Parts Used
• Wiring the Reaction Game
• Programming the Reaction Game
• Two Players Makes It More Fun
• Wiring the Two Player Reaction Game
• Programming the Two Player Reaction Game

Burglar Alarm
• Wiring the Basic Motion Sensor
• Programming the Basic Motion Sensor
• Burglar Alarm
• Wiring the Burglar Alarm with Light
• Programming the Burglar Alarm with Light
• Wiring the Burglar Alarm with Light and Sound
• Programming the Burglar Alarm with Light and Sound
• Wiring the Extended Burglar Alarm with Light and Sound
• Programming the Extended Burglar Alarm

Potentiometer and PWM LED
• Reading a Potentiometer
• Using PWM to Fade an LED

Temperature Gauge

Data Logger
• Data Logger Wiring
• Programming the Temperature Data Logger
• Data Logger Without Wiring
• Using the REPL to Rename boot.py

NeoPixel LEDs
• Wiring the NeoPixel LED Strip
• Installing the Adafruit CircuitPython NeoPixel Library
• Programming NeoPixel LEDs

FAQ and Troubleshooting
• FAQ
• board.I2C(), board.SPI(), and board.UART() do not exist. What should I do?
• Is pulseio supported?

CircuitPython Essentials

Downloads

©Adafruit Industries Page 3 of 92

©Adafruit Industries Page 4 of 92

Overview

The Raspberry Pi foundation changed single-board computing when they released
the Raspberry Pi computer (https://adafru.it/Qa1), now they're ready to do the same for
microcontrollers with the release of the brand new Raspberry Pi Pico. This low-cost
microcontroller board features a powerful new chip, the RP2040, and all the fixin's to
get started with embedded electronics projects at a stress-free price.

The Pico is 0.825" x 2" and can have headers soldered in for use in a breadboard or
perfboard, or can be soldered directly onto a PCB with the castellated pads. There's
20 pads on each side, with groups of general purpose input-and-output (GPIO) pins
interleaved with plenty of ground pins. All of the GPIO pins are 3.3V logic, and are not
5V-safe so stick to 3V! You get a total of 25 GPIO pins (technically there are 26 but IO
#15 has a special purpose and should not be used by projects), 3 of those can be
analog inputs (the chip has 4 ADC but one is not broken out). There are no true
analog output (DAC) pins.

©Adafruit Industries Page 5 of 92

https://www.raspberrypi.org/archives/723
https://www.raspberrypi.org/archives/723

On the slim green board is minimal circuitry to get you going: A 5V to 3.3V power
supply converter, single green LED on GP25, boot select button, RP2040 chip with
dual-core Cortex M0+, 2 MegaBytes of QSPI flash storage, and crystal.

Inside the RP2040 is a 'permanent ROM' USB UF2 bootloader. What that means is
when you want to program new firmware, you can hold down the BOOTSEL button
while plugging it into USB (or pulling down the RUN/Reset pin to ground) and it will
appear as a USB disk drive you can drag the firmware onto. Folks who have been
using Adafruit products will find this very familiar - we use the technique on all our
native-USB boards. Just note you don't double-click reset, instead hold down
BOOTSEL during boot to enter the bootloader!

The RP2040 is a powerful chip, which has the clock speed of our M4 (SAMD51), and
two cores that are equivalent to our M0 (SAMD21). Since it is an M0 chip, it does not
have a floating point unit, or DSP hardware support - so if you're doing something
with heavy floating point math, it will be done in software and thus not as fast as an
M4. For many other computational tasks, you'll get close-to-M4 speeds!

©Adafruit Industries Page 6 of 92

For peripherals, there are two I2C controllers, two SPI controllers, and two UARTs that
are multiplexed across the GPIO - check the pinout for what pins can be set to which.
There are 16 PWM channels, each pin has a channel it can be set to (ditto on the
pinout).

You'll note there's no I2S peripheral, or SDIO, or camera, what's up with that? Well
instead of having specific hardware support for serial-data-like peripherals like these,
the RP2040 comes with the PIO state machine system which is a unique and powerful
way to create custom hardware logic and data processing blocks that run on their
own without taking up a CPU. For example, NeoPixels - often we bitbang the timing-
specific protocol for these LEDs. For the RP2040, we instead use a PIO object that
reads in the data buffer and clocks out the right bitstream with perfect
accuracy. Same with I2S audio in or out, LED matrix displays, 8-bit or SPI based TFTs,
even VGA (https://adafru.it/Qa2)! In MicroPython and CircuitPython you can create PIO
control commands to script the peripheral and load it in at runtime. There are 2 PIO
peripherals with 4 state machines each.

There is great C/C++ support (https://adafru.it/Qa3), Arduino (https://adafru.it/
11Bz)support (https://adafru.it/11Bz) (guide (https://adafru.it/11BA)), an
official MicroPython port (https://adafru.it/Sjc), and a CircuitPython port (https://
adafru.it/Em8)! We of course recommend CircuitPython because we think it's the
easiest way to get started (https://adafru.it/cpy-welcome) and it has support with most
our drivers, displays, sensors, and more, supported out of the box so you can follow
along with our CircuitPython projects and tutorials.

While the RP2040 has lots of onboard RAM (264KB), it does not have built in FLASH
memory. Instead that is provided by the external QSPI flash chip. On this board there

©Adafruit Industries Page 7 of 92

https://github.com/raspberrypi/pico-examples/tree/master/pio
https://github.com/raspberrypi/pico-examples/tree/master/pio
https://github.com/raspberrypi/pico-sdk
https://arduino-pico.readthedocs.io/en/latest/
https://arduino-pico.readthedocs.io/en/latest/
https://learn.adafruit.com/rp2040-arduino-with-the-earlephilhower-core
https://micropython.org/download/
https://circuitpython.org/downloads
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython

is 2MB, which is shared between the program it's running and any file storage used
by MicroPython or CircuitPython. When using C/C++ you get the whole flash memory,
if using Python you will have about 1 MB remaining for code, files, images, fonts, etc.

RP2040 Chip features:

Dual ARM Cortex-M0+ @ 133MHz
264kB on-chip SRAM in six independent banks
Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus
DMA controller
Fully-connected AHB crossbar
Interpolator and integer divider peripherals
On-chip programmable LDO to generate core voltage
2 on-chip PLLs to generate USB and core clocks
30 GPIO pins, 3 of which can be used as analogue inputs
Peripherals
2 UARTs
2 SPI controllers
2 I2C controllers
16 PWM channels
USB 1.1 controller and PHY, with host and device support
8 PIO state machines

Other Required Hardware
The following list of hardware, or some equivalent thereof, is required to complete
this guide.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 8 of 92

Half Sized Premium Breadboard - 400 Tie
Points
This is a cute, half-size breadboard
with 400 tie points, good for small
projects. It's 3.25" x 2.2" / 8.3cm x
5.5cm with a standard double-strip in
the...
https://www.adafruit.com/product/64

Premium Male/Male Jumper Wires - 40 x
6" (150mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are 6"
(150mm) long and come in a 'strip' of 40 (4
pieces of each of...
https://www.adafruit.com/product/758

Premium Female/Male 'Extension' Jumper
Wires - 40 x 6" (150mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are 6"
(150mm) long and come in a 'strip' of 40 (4
pieces of each of...
https://www.adafruit.com/product/826

Tactile Switch Buttons (12mm square,
6mm tall) x 10 pack
Medium-sized clicky momentary switches
are standard input "buttons" on electronic
projects. These work best in a PCB but
https://www.adafruit.com/product/1119

©Adafruit Industries Page 9 of 92

https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://www.adafruit.com/product/758
https://www.adafruit.com/product/758
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119

Diffused 5mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some indicators? We are big fans of
these diffused LEDs. They are fairly
bright, so they can be seen in daytime,
and from any angle. They go easily into a
breadboard and will add...
https://www.adafruit.com/product/4203

Through-Hole Resistors - 220 ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/2780

Any resistors with a value of 220Ω-1.0KΩ will work. The higher the value, the dimmer
your LEDs will be!

Piezo Buzzer
Piezo buzzers are used for making beeps,
tones and alerts. This one is petite but
loud! Drive it with 3-30V peak-to-peak
square wave. To use, connect one pin to
ground (either one) and...
https://www.adafruit.com/product/160

©Adafruit Industries Page 10 of 92

https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/2780
https://www.adafruit.com/product/2780
https://www.adafruit.com/product/2780
https://www.adafruit.com/product/160
https://www.adafruit.com/product/160

Breadboard trim potentiometer
These are our favorite trim pots, perfect
for breadboarding and prototyping. They
have a long grippy adjustment knob and
with 0.1" spacing, they plug into
breadboards or...
https://www.adafruit.com/product/356

PIR (motion) sensor
PIR sensors are used to detect motion
from pets/humanoids from about 20 feet
away (possibly works on zombies, not
guaranteed). This one has an adjustable
delay before firing (approx...
https://www.adafruit.com/product/189

Adafruit NeoPixel LED Strip with 3-pin JST
Connector - 1 meter
Plug in and glow, this Adafruit NeoPixel
LED Strip with JST PH Connector has 30
total LEDs and is 1 meter long, in classy
Adafruit...
https://www.adafruit.com/product/4801

Pinouts
This is a top view of the pinouts on the Raspberry Pi Pico. Click on the image for an
enlarged, less blurry view. The pin labels are on the bottom of the board.

Another nice diagram is available at https://pico.pinout.xyz/ (https://adafru.it/19DX).
Click on "Advanced" to see extra information.

See the Downloads (https://adafru.it/QTd) page for a paper template you can put
underneath the Pico to label the pins.

©Adafruit Industries Page 11 of 92

https://www.adafruit.com/product/356
https://www.adafruit.com/product/356
https://www.adafruit.com/product/189
https://www.adafruit.com/product/189
https://www.adafruit.com/product/4801
https://www.adafruit.com/product/4801
https://www.adafruit.com/product/4801
https://pico.pinout.xyz/
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/downloads

There are two I2C peripherals available, I2C0 and I2C1, two SPI peripherals, SPI0 and
SPI1, and two UART peripherals, UART0 and UART1. You can assign any of these to
the pins on which they are available. So for example, you can use GP0/GP1 for I2C0,
and simultaneously use GP2/GP3 for I2C1, but you cannot use GP0/GP1 together with
GP4/GP5 for I2C use, because they are both usable only with I2C0.

In CircuitPython, you don't need to specify exactly which peripheral is used. As long
you choose valid pins, CircuitPython will choose a free peripheral.

No Basic Default board Devices
The Pico does not label specific pins as the defaults to use for I2C, SPI, or UART
connections. So CircuitPython running on the Pico does not provide board.I2C() ,
board.SPI() , or board.UART() , since it's not immediately obvious what they
would correspond to. For example:

import board

i2c = board.I2C() # Does not work on the Pico.

CircuitPython for the Pico does include board.STEMMA_I2C() to work with the
STEMMA I2C connector on the Adafruit Proto Cowbell. See the next section
for details.

©Adafruit Industries Page 12 of 92

Instead, use the busio (https://adafru.it/Qsf) module to create your bus and then
specify the specific pins you want to use. To do so, use the pinout diagram above to
find available pins, for example I2C0_SDA is on GP0 (as well as other locations). You
then use the board.GPx pin name when creating the bus.

Here are some specific examples.

I2C Example

To setup an I2C bus (https://adafru.it/Qsf), you specify the SCL and SDA pins being
used. You can look for "SCL" and "SDA" in the pin names in the pinout diagram above.

I2Cx_SCL = SCL
I2Cx_SDA = SDA

For example, here is how you would setup an I2C bus to use GP1 as SCL and GP0 as
SDA:

import board
import busio

i2c = busio.I2C(scl=board.GP1, sda=board.GP0)

SPI Example

To setup a SPI bus (https://adafru.it/Qsf), you specify the SCK, MOSI (microcontroller
out, sensor in), and MISO (microcontroller in, sensor out) pins. The Pico uses a
different naming convention for these:

SPIx_SCK = SCK
SPIx_TX = MOSI
SPIx_RX = MISO

So use that mapping to help find available pins.

Here's an example:

import board
import busio

spi = busio.SPI(clock=board.GP2, MOSI=board.GP3, MISO=board.GP4)

UART Example

To setup a UART bus (https://adafru.it/Qsf), you specify the TX and RX pins. Be sure to
use the UARTx pins and not the similarly named SPIx ones.

•
•

•
•
•

©Adafruit Industries Page 13 of 92

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.I2C
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.UART

Here's an example:

import board
import busio

uart = busio.UART(tx=board.GP4, rx=board.GP5)

The board.STEMMA_I2C() Object
CircuitPython running on the Pico includes the board.STEMMA_I2C() object. This
represents a STEMMA QT connector connected to IO4 (SDA), and IO5 (SCL).

You can use it in your code when using the Adafruit PiCowbell Proto for Pico (http://
adafru.it/5200) with a STEMMA QT breakout connected to the included STEMMA QT
connector.

Power Sensing Pins Available in CircuitPython
There are two pins available in CircuitPython for power sensing on the Pico.

VOLTAGE_MONITOR (GP24) - This pin is connected to Vsys, which feed the
voltage regulator, via a voltage divider. You can connect a battery to Vsys, and
the voltage monitor pin can be used as a crude battery voltage monitor.
VBUS_SENSE (GP29) - This pin is high if the board is powered by USB.

Using Adafruit AR with Raspberry Pi Pico

With this new Adafruit AR update, you’re able to scan your Raspberry Pi Pico to
display an overlay of the boards pinouts and power pins. Here we'll show you how to
get started.

•

•

©Adafruit Industries Page 14 of 92

https://www.adafruit.com/product/5200

To get started:
Before downloading this app, make sure your mobile device is running iOS 14 or
greater.

Download Adafruit AR from the Apple App

Adafruit AR on the App Store (https://adafru.it/Ptb)

Once you’ve opened the app use the boards scanner mode to start.

Please note - the Adafruit AR app is currently only available for iOS.

©Adafruit Industries Page 15 of 92

https://apps.apple.com/us/app/adafruit-ar/id1375722584

With your Raspberry Pi Pico, scan the front of the board.

Due to the small size of the Raspberry Pi Pico, you’ll need to scan the board a bit
closely. Your device should be ideally 3 inches away from board to be recognized.

For the best practice to scan your board - make sure you are scanning in a well lit
area and avoid light glare while scanning.

©Adafruit Industries Page 16 of 92

MicroPython or CircuitPython?
Now that you have a Pico you're probably wondering why most Adafruit tutorials are
for CircuitPython why the official Python is called MicroPython?

Whats the difference, why use one or the other?

CircuitPython is a 'fork' based on MicroPython
CircuitPython code is gonna look a lot like MicroPython because they're based on the
same Python implementation. There are some minor differences because
CircuitPython is focused on beginners, education, and getting folks started super fast.
If you already know MicroPython, 95% of what you know will work just the same!

©Adafruit Industries Page 17 of 92

CircuitPython is also available for the Pico and generally RP2040 boards. You load it
just like loading MicroPython.

While CircuitPython is based on MicroPython, there are some key differences why you
may want to use CircuitPython instead of MicroPython.

So what's different?
There's a few differences and they're all documented here (https://adafru.it/tB7),
however for Pico users who have tried or are following MicroPython guides the most
important are...

CircuitPython was designed to have a USB disk drive that appears when you plug in
the board. That disk drive is small (on the order of MB!) and holds your code and files.
You can treat it just like a disk drive - drag and drop files, delete and copy them. You
do not need to use Thonny to 'upload' a file - simply drag any file you want to the USB
drive.

CircuitPython will restart your code when you save files to the disk drive. That
means when you write Python code, whenever you save it will auto-reload the code
for you, for instant gratification. This is a little unusual for programmers who are used
to 'edit-save-compile-upload-reset-run' - we go straight to 'edit-save-run'.

CircuitPython has a consistent API across all boards. That means that whether you're
using a Pico, or an nRF52840 or an ESP32-S2 or SAMD51 for your project, the code
for your hardware is identical. (Other than pin names which may vary depending on
how many there are on the board itself and what they're called).

CircuitPython has a lot of examples and support!
There are 260+ libraries for the standard CircuitPython API. Most of these will already
work. Listed here (https://adafru.it/QaO)

Tons of guides and tutorials at https://learn.adafruit.com/category/
circuitpython (https://adafru.it/Ew6)

Most CircuitPython libraries also work on Raspberry Pis via the Blinka library (https://
adafru.it/BSN). That means you can write code that works on both!

Why Use MicroPython?
You may want to use MicroPython for:
1) Advanced APIs such as interrupts and threading.
2) Complete PIO API (CircuitPython's support is incomplete)
3) Using existing MicroPython code

©Adafruit Industries Page 18 of 92

https://github.com/adafruit/circuitpython#differences-from-micropython
https://circuitpython.readthedocs.io/projects/bundle/en/latest/drivers.html
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

It's great to know both!

To get started quick:
Download CircuitPython for the Pico from circuitpython.org: https://circuitpython.org/
board/raspberry_pi_pico/ (https://adafru.it/QaP)

For now, click "Absolute Newest", then click your language code such as "en_US",
and finally download the UF2 file at the top. That will be the latest and greatest
version of CircuitPython. As support matures, the download page will stable releases.
You can also choose a beta release but many features and fixes are being added on a
daily basis, so "Absolute Newest" will be the best for a while.

After dragging the CircuitPython UF2 to RPI-RP2 bootloader the chip will reset and
show a CIRCUITPY drive.

See the Welcome to CircuitPython (https://adafru.it/AlP) and CircuitPython
Essentials (https://adafru.it/BX8) guides for CircuitPython basics. API Docs are
here (https://adafru.it/Bvz) though they won't include RP2040 specific modules until
support is merged in. A Pico specific guide that will grow in time is here (https://
adafru.it/QaQ).

Join the Adafruit Discord () for #help-with-circuitpython and feel free to mention
@tannewt for RP2040 specific questions.

What is CircuitPython?
CircuitPython is a programming language designed to simplify experimenting and
learning to program on low-cost microcontroller boards. It makes getting started
easier than ever with no upfront desktop downloads needed. Once you get your
board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python
Python is the fastest growing programming language. It's taught in schools and
universities. It's a high-level programming language which means it's designed to be

©Adafruit Industries Page 19 of 92

https://circuitpython.org/board/raspberry_pi_pico/
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com/welcome-to-circuitpython/
https://learn.adafruit.com/circuitpython-essentials/
https://learn.adafruit.com/circuitpython-essentials/
https://circuitpython.readthedocs.io/en/latest/README.html
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://adafru.it/discord

easier to read, write and maintain. It supports modules and packages which means it's
easy to reuse your code for other projects. It has a built in interpreter which means
there are no extra steps, like compiling, to get your code to work. And of course,
Python is Open Source Software which means it's free for anyone to use, modify or
improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already
have Python knowledge, you can easily apply that to using CircuitPython. If you have
no previous experience, it's really simple to get started!

Why would I use CircuitPython?
CircuitPython is designed to run on microcontroller boards. A microcontroller board is
a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.
The board you're holding is a microcontroller board! CircuitPython is easy to use
because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the
file, and it runs immediately. There is no compiling, no downloading and no
uploading needed.
You're new to programming. CircuitPython is designed with education in mind.
It's easy to start learning how to program and you get immediate feedback from
the board.
Easily update your code. Since your code lives on the disk drive, you can edit it
whenever you like, you can also keep multiple files around for easy
experimentation.
The serial console and REPL. These allow for live feedback from your code and
interactive programming.
File storage. The internal storage for CircuitPython makes it great for data-
logging, playing audio clips, and otherwise interacting with files.

•

•

•

•

•

©Adafruit Industries Page 20 of 92

Strong hardware support. CircuitPython has builtin support for microcontroller
hardware features like digital I/O pins, hardware buses (UART, I2C, SPI), audio I/
O, and other capabilities. There are also many libraries and drivers for sensors,
breakout boards and other external components.
It's Python! Python is the fastest-growing programming language. It's taught in
schools and universities. CircuitPython is almost-completely compatible with
Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being
updated. Adafruit welcomes and encourages feedback from the community, and
incorporate it into the development of CircuitPython. That's the core of the open
source concept. This makes CircuitPython better for you and everyone who uses it!

Installing CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart
Follow this step-by-step to quickly get CircuitPython working on your board.

Download the latest version of
CircuitPython for the Raspberry Pi

Pico from circuitpython.org
https://adafru.it/QaP

Click the link above and download the
latest UF2 file.

Download and save it to your desktop (or
wherever is handy).

•

•

©Adafruit Industries Page 21 of 92

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98753

Start with your Pico unplugged from USB.
Hold down the BOOTSEL button, and
while continuing to hold it (don't let go!),
plug the Pico into USB. Continue to hold
the BOOTSEL button until the RPI-RP2
drive appears!

If the drive does not appear, unplug your
Pico and go through the above process
again.

A lot of people end up using charge-only
USB cables and it is very frustrating! So
make sure you have a USB cable you
know is good for data sync.

You will see a new disk drive appear called
RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2
file to RPI-RP2.

©Adafruit Industries Page 22 of 92

https://learn.adafruit.com//assets/125993
https://learn.adafruit.com//assets/125993
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98758

The RPI-RP2 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Flash Resetting UF2
If your Pico ever gets into a really weird state and doesn't even show up as a disk
drive when installing CircuitPython, try installing this 'nuke' UF2 which will do a 'deep
clean' on your Flash Memory. You will lose all the files on the board, but at least you'll
be able to revive it! After nuking, re-install CircuitPython

flash_nuke.uf2
https://adafru.it/1afi

Installing the Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial
output!

Mu is our recommended editor - please use it (unless you are an experienced
coder with a favorite editor already!).

©Adafruit Industries Page 23 of 92

https://learn.adafruit.com//assets/98759
https://learn.adafruit.com//assets/98759
https://datasheets.raspberrypi.com/soft/flash_nuke.uf2

Download and Install Mu

Download Mu from https://
codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads and
installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

Starting Up Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Windows users: due to the nature of MSI installers, please remove old
versions of Mu before installing the latest version.

©Adafruit Industries Page 24 of 92

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

Using Mu
You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

CircuitPython Programming Basics
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

Now that you've installed CircuitPython, it's time to begin your first program. If you
haven't already, plug in your Raspberry Pi Pico to your computer via USB. Then, open
your favorite Python editor.

©Adafruit Industries Page 25 of 92

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Click the Serial button in Mu to open the serial console. Click anywhere in the serial
output window at the bottom of Mu, and press CTRL+C on your keyboard. This will
bring you to the REPL. At the REPL prompt (>>>), type the following code followed by
the ENTER key:

print("Hello, world!")

Immediately upon pressing enter, the code is executed. Python responds by printing
the message.

The REPL, or the Read-Evaluate-Print-Loop, allows you to run individual lines of code,
one at a time. You can run multiple lines of code in sequence to execute a longer
program. It's great for testing a program line by line to determine where an issue
might be. It's interactive, so it's excellent for testing new ideas.

It is, however, important to remember that the REPL is ephemeral. Any code you write
there is not saved anywhere. If you'd like to save your code, you can easily do so with
CircuitPython and Mu.

Once installed, CircuitPython presents your Pico board as a USB drive called
CIRCUITPY. Your code and any necessary libraries live on this drive. With a fresh
CircuitPython install, you'll find a code.py file containing print("Hello World!")
and an empty lib folder. If your CIRCUITPY drive does not contain a code.py file, you
can easily create one and save it to the drive. CircuitPython looks for code.py and
executes the code within the file automatically when the board starts up or resets.
Following a change to the contents of CIRCUITPY, such as making a change to the
code.py file, the board will reset, and the code will be run. You do not need to
manually run the code. Note that all changes to the contents of CIRCUITPY, such as
saving a new file, renaming a current file, or deleting an existing file will trigger a reset
of the board.

In Mu, if the file currently open is not code.py, click Load in the Mu button bar,
navigate to your CIRCUITPY drive, and open code.py. If there is no code.py file,
create a new file by clicking New in the Mu button bar, then click Save, navigate to
your CIRCUITPY drive, and save the file as code.py.

Note that the code in code.py is not running while you are actively in the REPL. To exit
the REPL, simply type CTRL+D at the REPL prompt (>>>).

©Adafruit Industries Page 26 of 92

In the code.py file, click in the Mu text editor, and add the same simple line of code as
above (if it's not already there). Save the file. The code will run automatically, and the
message will be printed in the serial console!

Indentation and Code Loops
CircuitPython runs the same as a standard Python program, typically running from top
to bottom, executing each line. However, you can control the flow of a program using
indentation. Delete the current contents of your code.py file and replace them with
the following code:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example of definite loop."""
print("Loop starting!")
for i in range(10):

print("Loop number", i)
print("Loop finished!")

Loop is referring to a section of code that runs repeatedly - in this instance, the
for i in range(10): . This is called a definite loop, a loop that runs a set number
of times, in this case, 10.

Your code.py should look like this:

You must exit the REPL for the code found in code.py to be run.

©Adafruit Industries Page 27 of 92

Save the file, and check out the serial output.

Indentation is crucial to flow control in code, but is also a very common cause of
syntax errors, which causes the code to fail to run. If your code fails with a syntax
error, be sure to check your indentation.

There are also indefinite loops in CircuitPython, that is, a loop that continues
indefinitely. Update your code.py to the following. Be sure to delete the existing code!
Your code.py file should only include the following code.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example of infinite loop. Final print statement is never reached."""
print("Loop starting!")
while True:

print("Loop running!")
print("Loop finished!")

Keep an eye on the serial console and click save. You should see the Loop
Starting! message posted once initially, and then the Loop running! message
repeated indefinitely.

©Adafruit Industries Page 28 of 92

The Loop Finished! message will never show up because it is not "inside" the
loop. When there is a while True: in Python code, everything indented under it will
run repeatedly - when the end of the loop is reached, it will begin again at the
beginning of the loop.

Conditionals and Variables
In CircuitPython, like Python, you can create variables. You can think of variables as a
name attached to a specific object. To create a variable, you simply assign it and start
using it. You use = to assign a variable name to the desired object.

Update your code.py to the following.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example of assigning a variable."""
user_name = input("What is your name? ")

Save the file.

Click into the serial output. Type your answer to the question and press ENTER on
your keyboard.

You've saved your name to the user_name variable! Now you can do something with
it.

Update code.py to the following. Note that when Mu sees that your code needs to be
indented, it will do it automatically. Therefore, if your next line of code does not need
to be indented, you'll need to backspace to remove the indentation.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example of assigning a variable and comparing it to a value."""

©Adafruit Industries Page 29 of 92

user_name = input ("What is your name? ")

if user_name == "Clark Kent":
print("You are Superman!")

else:
print("You are not Superman!")

Save your code.py file. Now click in the serial console, type in your name, and press
ENTER on your keyboard. Unless your name is "Clark Kent", you'll see the You are
not Superman! message.

While still in the serial console, type CTRL+D to reload, and run the code again. This
time, type in Clark Kent , and press ENTER on your keyboard. Make sure you have
the capitalisation exactly as shown!

You are Superman!

The == symbol tells CircuitPython to directly compare the text entered at the prompt,
also known as a string, with "Clark Kent" to see if they are the same. If they are, then it
prints the first message, You are Superman! , found under the if statement. If they
are not, it prints the second message, You are not Superman! , found under the
else statement.

There are other symbols, such as > and >= , to use if you're working with numbers
instead of strings. To check if a string or value is not the same as another string or
value, you would use != , which is essentially the opposite of == . These symbols are
collectively known as comparison operators.

Note that = sets a variable equal to the value following it, and == checks to see if
the variable is equal to the value following it. Don't mix them up!

Comparison operators can be used in loops as well. Update your code.py to the
following and save.

©Adafruit Industries Page 30 of 92

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example of assigning a variable, and comparing it to a value in a loop."""
user_name = input ("What is your name? ")

while user_name != "Clark Kent":
print("You are not Superman - try again!")
user_name = input ("What is your name? ")

print("You are Superman!")

This time, instead of the code ending following the comparison of the entered name
to Clark Kent, it will keep asking for your name until it turns out that you're Superman,
at which point it will stop running.

That's only the beginning of what you can do with variables and conditionals in
CircuitPython!

CircuitPython Pins and Modules
CircuitPython is designed to run on microcontrollers and allows you to interface with
all kinds of sensors, inputs and other hardware peripherals. There are tons of guides
showing how to wire up a circuit, and use CircuitPython to, for example, read data
from a sensor, or detect a button press. Most CircuitPython code includes hardware
setup which requires various modules, such as board or digitalio . You import
these modules and then use them in your code. How does CircuitPython know to look
for hardware in the specific place you connected it, and where do these modules
come from?

This page explains both. You'll learn how CircuitPython finds the pins on your
microcontroller board, including how to find the available pins for your board and
what each pin is named. You'll also learn about the modules built into CircuitPython,
including how to find all the modules available for your board.

CircuitPython Pins
When using hardware peripherals with a CircuitPython compatible microcontroller,
you'll almost certainly be utilising pins. This section will cover how to access your
board's pins using CircuitPython, how to discover what pins and board-specific

©Adafruit Industries Page 31 of 92

objects are available in CircuitPython for your board, how to use the board-specific
objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller
board, the import list in your code will include import board . The board module is
built into CircuitPython, and is used to provide access to a series of board-specific
objects, including pins. Take a look at your microcontroller board. You'll notice that
next to the pins are pin labels. You can always access a pin by its pin label. However,
there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL
(>>>) and run the following commands:

import board
dir(board)

Here is the output for the QT Py SAMD21. You may have a different board, and this
list will vary, based on the board.

The following pins have labels on the physical QT Py SAMD21 board: A0, A1, A2, A3,
SDA, SCL, TX, RX, SCK, MISO, and MOSI. You see that there are many more entries
available in board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to
be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button
or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py
SAMD21, pin A0 is labeled on the physical board silkscreen, but it is available in
CircuitPython as both A0 and D0 . For more information on finding all the names for a
given pin, see the What Are All the Available Pin Names? (https://adafru.it/QkA)
section below.

The results of dir(board) for CircuitPython compatible boards will look similar to
the results for the QT Py SAMD21 in terms of the pin names, e.g. A0, D0, etc.
However, some boards, for example, the Metro ESP32-S2, have different styled pin
names. Here is the output for the Metro ESP32-S2.

©Adafruit Industries Page 32 of 92

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins
on the physical board are labeled only with a number, so an easy way to know how to
access them in CircuitPython, is to run those commands in the REPL and find the pin
naming scheme.

I2C, SPI, and UART
You'll also see there are often (but not always!) three special board-specific objects
included: I2C , SPI , and UART - each one is for the default pin-set used for each of
the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating
('creating') it. Instantiating an object means you are creating an instance of the object
with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects
two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,
if you were using the TSL2591 light sensor and its CircuitPython library, the next line
of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the
board module. Instead of the two lines of code above, you simply provide the
singleton as the I2C object. So if you were using the TSL2591 and its CircuitPython
library, the two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided,
verify that you have the proper pin name by running these commands in the
REPL.

©Adafruit Industries Page 33 of 92

This eliminates the need for the busio module, and simplifies the code. Behind the
scenes, the board.I2C() object is instantiated when you call it, but not before, and
on subsequent calls, it returns the same object. Basically, it does not create an object
until you need it, and provides the same object every time you need it. You can call
board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?
Many pins on CircuitPython compatible microcontroller boards have multiple names,
however, typically, there's only one name labeled on the physical board. So how do
you find out what the other available pin names are? Simple, with the following script!
Each line printed out to the serial console contains the set of names for a particular
pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on
the directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all
boards. They exist if there are board markings for the default pins for those
devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board -
often labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C).
Check your board documentation/pinout for the default busses.

©Adafruit Industries Page 34 of 92

SPDX-FileCopyrightText: 2020 anecdata for Adafruit Industries
SPDX-FileCopyrightText: 2021 Neradoc for Adafruit Industries
SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-FileCopyrightText: 2023 Dan Halbert for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board
try:

import cyw43 # raspberrypi
except ImportError:

cyw43 = None

board_pins = []
for pin in dir(microcontroller.pin):

if (isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin) or
(cyw43 and isinstance(getattr(microcontroller.pin, pin), cyw43.CywPin))):
pins = []
for alias in dir(board):

if getattr(board, alias) is getattr(microcontroller.pin, pin):
pins.append(f"board.{alias}")

Add the original GPIO name, in parentheses.
if pins:

Only include pins that are in board.
pins.append(f"({str(pin)})")
board_pins.append(" ".join(pins))

for pins in sorted(board_pins):
print(pins)

Here is the result when this script is run on QT Py SAMD21:

Each line represents a single pin. Find the line containing the pin name that's labeled
on the physical board, and you'll find the other names available for that pin. For
example, the first pin on the board is labeled A0. The first line in the output is
board.A0 board.D0 (PA02) . This means that you can access pin A0 in
CircuitPython using both board.A0 and board.D0 .

The pins in parentheses are the microcontroller pin names. See the next section for
more info on those.

You'll notice there are two "pins" that aren't labeled on the board but appear in the
list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of
these special pins that give you access to built-in board hardware, such as an LED or
an on-board sensor. The QT Py SAMD21 only has one on-board extra piece of

©Adafruit Industries Page 35 of 92

hardware, a NeoPixel LED, so there's only the one available in the list. But you can
also control whether or not power is applied to the NeoPixel, so there's a separate pin
for that.

That's all there is to figuring out the available names for a pin on a compatible
microcontroller board in CircuitPython!

Microcontroller Pin Names
The pin names available to you in the CircuitPython board module are not the same
as the names of the pins on the microcontroller itself. The board pin names are
aliases to the microcontroller pin names. If you look at the datasheet for your
microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or
"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,
you'll need the microcontroller.pin module. As with board , you can run
dir(microcontroller.pin) in the REPL to receive a list of the microcontroller pin
names.

CircuitPython Built-In Modules
There is a set of modules used in most CircuitPython programs. One or more of these
modules is always used in projects involving hardware. Often hardware requires
installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to
find board or digitalio in the same bundle, you'll come up lacking. So, where do
these modules come from? They're built into CircuitPython! You can find an
comprehensive list of built-in CircuitPython modules and the technical details of their
functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like
modules included here (https://adafru.it/QkC). However, not every module is available
for every board due to size constraints or hardware limitations. How do you find out
what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/
N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the
following command.

help("modules")

©Adafruit Industries Page 36 of 92

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

That's it! You now know two ways to find all of the modules built into CircuitPython for
your compatible microcontroller board.

Blinky and a Button
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

Printing "Hello, World!" is the traditional first program to write in any language. In
CircuitPython, the Hello, World! equivalent is blinking an LED. This is easy to do with
your Raspberry Pi Pico board and CircuitPython.

The Built-In LED
Your Pico board has a built in LED, labeled "LED", located to the left of the USB port at
the top of the board. Like any other LED, it turns on when it is powered, and is
otherwise off. The LED is connected to pin GP25. GP25 is dedicated to the LED, and
therefore is not available as a pin along the edge of your Pico board. In CircuitPython,
you can access this LED using board.LED .

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example for Pico. Turns on the built-in LED."""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True

©Adafruit Industries Page 37 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

So far, none of the examples have required importing anything. Most, if not all,
hardware programming requires you to import built-in modules or libraries.
CircuitPython libraries are not included in CircuitPython itself and require you to copy
files or folders to the lib folder on your CIRCUITPY drive. The built-in modules,
however, are included, and do not require any external files or folders. To see a list of
available built-in modules for your Pico board, you can enter the REPL and type the
following at the >>> prompt:

help("modules")

This example requires two modules: board and digitalio .

The first step to hardware programming is identifying the location of the hardware
board. The board module contains all of the pin names of the pins available on your
Pico board. These are not the pin names on the chip itself! They are the names of the
pins provided to CircuitPython for use in your code.

One of the most basic parts of interfacing with hardware is managing digital inputs
and outputs. This is where digitalio comes in. The digitalio module allows you
to digitally control IO pins, as well as set the direction and pull of the pin.

So, you import both board and digitalio at the beginning of the file:

import board
import digitalio

Next, you set up the LED. You assign the variable led to the
digitalio.DigitalInOut object. This will allow you to manipulate the LED object
using the led variable, instead of having to type out the entire object every time you
want to use it. The DigitalInOut object takes one argument - the pin object using
the board module, board.LED . Then you set the pin direction to OUTPUT to tell
your Pico board that it should be used as an output (versus an input).

©Adafruit Industries Page 38 of 92

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

This setup code tells your Pico board how to talk to the LED. The next step is to tell it
to turn on. To do this, you'll need to start a while True: loop. Within the loop, set
the led value to True with led.value = True . Remember, for code to be "in" a loop,
it must be indented under the while True: .

while True:
led.value = True

The green LED turns on!

It's worth noting, if you simply set the led value to True without a loop, it would flash
quickly once, and then remain turned off. This is due to the way CircuitPython works,
with regard to what happens when your program ends. When your code finishes
running, CircuitPython resets your Pico board to prepare it for the next run of code.
That means the set up you did earlier no longer applies, and the LED does not remain
turned on. To that end, most CircuitPython programs involve some kind of loop,
infinite or otherwise.

You'll notice the LED stays on. This is because you have not told it to turn off. To turn
the LED off, you set led.value = False . Try adding that line of code to the end of
your current code.py file.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example for Pico. Turns the built-in LED on and off with no delay."""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
led.value = False

The LED still doesn't appear to turn off. It is turning off! Your Pico board processes
code so quickly that, to the naked eye, the LED does not appear to be turning off.
However, it is rapidly flashing on and off, faster than you are able to process. The
solution is to add a delay. For that, you need to import a new module called time .
Then, you add a time.sleep() after turning the LED on, and after turning the LED
off.

Update your code.py to the following and save.

©Adafruit Industries Page 39 of 92

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example for Pico. Blinks the built-in LED."""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

The LED begins blinking!

Including a sleep() in your code tells the program to pause for the given number of
seconds. In this case, it pauses for half of one second, or 0.5 seconds. Try changing
0.5 to 1 and see what happens! The two sleep() times do not have to be the
same - try making them different to see the results.

There is a more concise but less clear way to do the same thing. Consider the
following. Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Example for Pico. Blinks the built-in LED."""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = not led.value
time.sleep(0.5)

The LED blinks!

Remember that when the LED value is True , it is on, and when it is False , it is off.
In this example, the not is a logic operator that reverses the result. So, it turns a
True into a False , and a False into a True . With the 0.5 second sleep() , this
causes the LED value to cycle between True and False every 0.5 seconds. It
does exactly the same thing as explicitly setting the value, but saves a couple of lines
of code!

©Adafruit Industries Page 40 of 92

An External LED
The first step to controlling an external LED is connecting one to your Pico board. For
this example, you'll need your Pico board, a breadboard, male-to-male jumper wires,
a resistor, and an LED. A 220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown in
the diagram.

Half Sized Premium Breadboard - 400 Tie
Points
This is a cute, half-size breadboard
with 400 tie points, good for small
projects. It's 3.25" x 2.2" / 8.3cm x
5.5cm with a standard double-strip in
the...
https://www.adafruit.com/product/64

Premium Male/Male Jumper Wires - 20 x
3" (75mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are 3"
(75mm) long and come in a 'strip' of 20
(2 pieces of each...
https://www.adafruit.com/product/1956

Diffused 5mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some indicators? We are big fans of
these diffused LEDs. They are fairly
bright, so they can be seen in daytime,
and from any angle. They go easily into a
breadboard and will add...
https://www.adafruit.com/product/4203

©Adafruit Industries Page 41 of 92

https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203

Through-Hole Resistors - 1.0K ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/4294

Wire up the LED to your Pico board as shown below.

Board GND to breadboard ground rail
(using a jumper wire)
Board GP14 to 220Ω resistor
LED+ to 220Ω resistor
LED- to breadboard ground rail (using a
jumper wire)

Now that you've wired up an LED to your Pico board, it's time to light it up. The code
is almost exactly the same as the code used to turn on the built-in LED. The only
change required is to update the pin provided in setup to the pin to which you
connected your external LED. You connected the external LED to GP14. So, take the
blink code from above, and change the pin to match the new pin assignment.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
LED example for Pico. Blinks external LED on and off.

External LEDs must have a current-limiting resistor between the LED and your
board. Without it, you can damage both the LED and your board!

©Adafruit Industries Page 42 of 92

https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://learn.adafruit.com//assets/98807
https://learn.adafruit.com//assets/98807

REQUIRED HARDWARE:
* LED on pin GP14.
"""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

The external LED begins blinking! That's all it takes to basically control an external
LED.

Now it's time to take a look at using hardware as an input (instead of an output like an
LED).

Using a Button as an Input
The IO in GPIO stands for input/output, which is to say that all GPIO pins can be used
as both inputs and outputs. For this example, you'll need your current wiring setup, a
button switch, and male-to-male jumper wires. The first step is connecting the button
to your Pico board.

Wire up the button to your current setup as shown below. The button used in the
diagram is a four-legged button. The legs are connected in pairs, so the simplest way
to ensure you're wired up properly is to use the opposite legs. There are buttons that
have only two legs, and in that case, you would still connect to the opposite legs.

Tactile Button switch (6mm) x 20 pack
Little clicky switches are standard input
"buttons" on electronic projects. These
work best in a PCB but
https://www.adafruit.com/product/367

©Adafruit Industries Page 43 of 92

https://www.adafruit.com/product/367
https://www.adafruit.com/product/367

Board 3V3 to breadboard power rail
(using jumper wire)
Board GP13 to leg of button (using jumper
wire)
Opposite leg of button to breadboard
power rail (using jumper wire)

Now that you have wired up your button, it's time to read status from it. Setup will
look a lot like setting up the LED, with a couple of important differences.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Button example for Pico. Prints button pressed state to serial console.

REQUIRED HARDWARE:
* Button switch on pin GP13.
"""
import time
import board
import digitalio

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
print(button.value)
time.sleep(0.5)

You import the same three modules: time , board and digitalio .

import time
import board
import digitalio

Then, as with the LED, you assign the variable button to a
digitalio.DigitalInOut object, and provide it the pin you used to connect it to
your Pico board - GP13. Then, unlike the LED, you set it to an input, and you set the
pull to DOWN.

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

©Adafruit Industries Page 44 of 92

https://learn.adafruit.com//assets/98808
https://learn.adafruit.com//assets/98808

This type of button is called a momentary button switch. When the button is not
pressed, the opposite legs are not connected, and when you press the button, it
makes a connection between the opposite legs. Pulling the pin down registers 0V
when it is not connected to anything, so connecting it to 3.3V, e.g. pressing the
button, registers a button press.

To check whether or not the button is pressed, you'll print the button.value in a
loop. The sleep() is included to keep the serial output readable - without a delay,
the serial output would be incredibly fast!

while True:
print(button.value)
time.sleep(0.5)

Perhaps you would rather print a message only when the button is pressed.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Button example for Pico. Prints message to serial console when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
"""
import time
import board
import digitalio

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
if button.value:

print("You pressed the button!")
time.sleep(0.5)

Now, check the serial console. Nothing is happening because you a have not pressed
the button. Try pressing the button.

©Adafruit Industries Page 45 of 92

If you continue to press the button, it will display the message every 0.5 seconds until
you let go. Now it's time to mix things up!

Control an External LED with a Button
Most electronics examples involve multiple components, which is why your Pico
board has so many GPIO pins on it. You've learned about controlling an external LED,
and reading the input from a button. You can combine those two concepts and control
the LED using the button!

Now you understand why you left the LED connected to your Pico board when the
previous example didn't involve it. You've already connected everything needed for
this example!

Your hardware setup should still look like
this.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Button and LED example for Pico. Turns on LED when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
* LED on pin GP14.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

©Adafruit Industries Page 46 of 92

https://learn.adafruit.com//assets/98809
https://learn.adafruit.com//assets/98809

while True:
if button.value:

led.value = True
led.value = False

Press the button. The LED turns on! Let it go, and the LED turns off.

You only need to import two modules this time: board and digitalio .

import board
import digitalio

Setup is the same for the LED and the button as it was previous, however, this time
you include both.

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

Finally, in your loop, you check to see if the button is pressed, and if so, you turn on
the LED. Otherwise, you turn off the LED.

while True:
if button.value:

led.value = True
led.value = False

Alternatively, you can simply set the LED value equal to the button value, and you get
the same results. Remember, when the button is pressed, it returns True , and when
it's not, it returns False . When the LED is set to True , it turns on, and when it's set
to False , it turns off. It's a quick way to control an LED with a button press!

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Button and LED example for Pico. Turns on LED when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
* LED on pin GP14.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
led.value = button.value

©Adafruit Industries Page 47 of 92

Traffic Light and Pedestrian Crossing
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

Traffic lights and pedestrian crossings are something most folks encounter on a
regular basis, but perhaps never give much consideration, especially to the fact that
they use microcontrollers. At their simplest, each of the light colors, red, amber and
green, turn on and off for a predetermined period of time. More typically, they are far
more complicated, involving things like inter-system communication, and tracking
traffic flow and pedestrian crossings. While building a typical traffic management
system is an incredibly advanced project, it's easy to build a simple simulator using a
microcontroller and a few components.

This example will show you how to use your Raspberry Pi Pico board to control
multiple LEDs using different timings, and how to monitor for a button press while
other code is running using polling.

Parts Used
Diffused 5mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some indicators? We are big fans of
these diffused LEDs. They are fairly
bright, so they can be seen in daytime,
and from any angle. They go easily into a
breadboard and will add...
https://www.adafruit.com/product/4203

©Adafruit Industries Page 48 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203

Through-Hole Resistors - 1.0K ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/4294

Wiring the Traffic Light
For this example, you'll need your Pico board, a red LED, an amber LED and a green
LED, three resistors, and a number of male-to-male jumper wires. A 220Ω-1.0KΩ
resistor will work; a 220Ω resistor is shown in the diagram.

The first step is to wire up the LEDs. Connect the LEDs to your Pico board as shown
below.

Board GND to breadboard ground rail
(using a jumper wire)
Board GP11 to 220Ω resistor
Red LED+ to 220Ω resistor (connected to
GP11)
Red LED- to breadboard ground rail (using
a jumper wire)
Board GP14 to 220Ω resistor
Amber LED+ to 220Ω resistor (connected
to GP14)
Amber LED- to breadboard ground rail
(using a jumper wire)
Board GP13 to 220Ω resistor
Green LED+ to 220Ω resistor (connected
to GP13)
Green LED- to breadboard ground rail
(using a jumper wire)

Programming the Traffic Light
Now that you've wired up your traffic light, you can begin programming it.

©Adafruit Industries Page 49 of 92

https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://learn.adafruit.com//assets/98810
https://learn.adafruit.com//assets/98810

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Traffic light simulator example for Pico. Turns on red, amber and green LEDs in
traffic
light-like sequence.

REQUIRED HARDWARE:
* Red LED on pin GP11.
* Amber LED on pin GP14.
* Green LED on pin GP13.
"""
import time
import board
import digitalio

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT

while True:
red_led.value = True
time.sleep(5)
amber_led.value = True
time.sleep(2)
red_led.value = False
amber_led.value = False
green_led.value = True
time.sleep(5)
green_led.value = False
amber_led.value = True
time.sleep(3)
amber_led.value = False

The red LED lights up, followed by the amber LED. Both turn off as the green LED
lights up. Green turns off, and amber lights up. Amber turns off, and the cycle begins
again with the red LED.

Now, a detailed look at the code. First, you import the necessary modules.

import time
import board
import digitalio

Next, you set up the LEDs. As with the single red LED, each of the three LEDs requires
assigning a variable to a digitalio object, and setting the pin direction to output.

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT

©Adafruit Industries Page 50 of 92

Variables should be descriptive and make it simple to figure out what they apply to.
Previously, with only one LED, it was reasonable to call the variable led . Since you
are now working with three different colors of LEDs, you should be more specific with
your variables, so you know what you're working with in your code. Therefore, the
variable names were updated to red_led , amber_led , and green_led .

Next you begin an infinite loop, and use time.sleep() to control the timing of the
LEDs.

while True:
red_led.value = True
time.sleep(5)
amber_led.value = True
time.sleep(2)
red_led.value = False
amber_led.value = False
green_led.value = True
time.sleep(5)
green_led.value = False
amber_led.value = True
time.sleep(3)
amber_led.value = False

This timing sequence is based on actual traffic lights in the United Kingdom,
shortened significantly for this example. Five seconds is hardly enough time for actual
traffic flow!

First, you turn on the red LED, and wait 5 seconds. Then you turn on the amber LED
for 2 seconds, to signal the light is about to change. The red LED stays on because
you have not yet told it to turn off. Next, you turn off both the red and amber LEDs.
Then you turn on the green LED for 5 seconds, followed by turning off the green LED.
Finally you turn on the amber LED for 3 seconds, and then turn it off. At that point, the
red LED turns on again because the loop has completed and restarted.

This example allows for traffic, but doesn't take pedestrians into account. The next
example does exactly that.

Traffic Light and Pedestrian Crossing
In the real world, traffic lights are designed not only for road vehicles, but also to
allow pedestrians to safely cross streets. Now, it's time to take a pedestrian into
consideration. Adding a couple of components can turn your traffic light into a
pedestrian crossing.

Wiring the Pedestrian Crossing
This example requires your current hardware setup, plus a button switch, a piezo
buzzer, and a few more male-to-male jumper wires.

©Adafruit Industries Page 51 of 92

Connect the button switch and piezo to your current setup as shown below. The
button is shown with jumper wires connected to two legs on the same side. Each pair
of legs is shaped a bit like a staple. You should be able to identify the separate pairs
and ensure you're connected to the opposite legs, even though you have the wires
on the same side. The direction of the piezo doesn't matter.

Board 3V3 to breadboard power rail
(using jumper wire)
Board GP16 to leg of button (using jumper
wire)
Opposite leg of button to breadboard
power rail (using jumper wire)
Board GP12 to leg of piezo buzzer (using
jumper wire)
Other leg of piezo buzzer to breadboard
ground rail (using jumper wire)

Programming the Traffic Light and Pedestrian Crossing
Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""Traffic light with pedestrian crossing simulator example for Pico. Turns on red,
amber and green
LEDs in traffic light-like sequence. When button is pressed, upon light sequence
completion, the
red LED turns on and the buzzer beeps to indicate pedestrian crossing is active.

REQUIRED HARDWARE:
* Red LED on pin GP11.
* Amber LED on pin GP14.
* Green LED on pin GP13.
* Button switch on pin GP16.
* Piezo buzzer on pin GP13.
"""
import time
import board
import digitalio
import pwmio

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP16)
button.switch_to_input(pull=digitalio.Pull.DOWN)
buzzer = pwmio.PWMOut(board.GP12, frequency=660, duty_cycle=0,
variable_frequency=True)

©Adafruit Industries Page 52 of 92

https://learn.adafruit.com//assets/98811
https://learn.adafruit.com//assets/98811

button_pressed = False

def waiting_for_button(duration):
global button_pressed # pylint: disable=global-statement
end = time.monotonic() + duration
while time.monotonic() < end:

if button.value:
button_pressed = True

while True:
if button_pressed:

red_led.value = True
for _ in range(10):

buzzer.duty_cycle = 2 ** 15
waiting_for_button(0.2)
buzzer.duty_cycle = 0
waiting_for_button(0.2)

button_pressed = False
red_led.value = True
waiting_for_button(5)
amber_led.value = True
waiting_for_button(2)
red_led.value = False
amber_led.value = False
green_led.value = True
waiting_for_button(5)
green_led.value = False
amber_led.value = True
waiting_for_button(3)
amber_led.value = False

The light sequence is the same as before. This time, however, you can press the
button, and when the light sequence completes, the red LED will stay on and the
piezo will play a series of beeps. Then the light sequence will begin again. You can
repeat this as often as you like.

Now, a detailed look at the code. First, you import the necessary modules. This
example uses the same three as the previous example, but also requires a new
module: pwmio .

import time
import board
import digitalio
import pwmio

Then you set up all of the hardware components. The LED setup is the same as
before, but you are adding in the button and the buzzer.

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP16)
button.switch_to_input(pull=digitalio.Pull.DOWN)

©Adafruit Industries Page 53 of 92

buzzer = pwmio.PWMOut(board.GP12, frequency=660, duty_cycle=0,
variable_frequency=True)

The button is set up as it as in previous examples, however the pin it is connected to
on your Pico board has changed, so make sure you use the current pin.

The buzzer set up is different than any previous examples. You can use PWM with
variable frequency to play tones using piezo buzzers. To use PWM with CircuitPython,
you use the pwmio module. You create the buzzer variable and assign it to a
pwmio.PWMOut object. This object can take up to four arguments: pin , frequency ,
duty_cycle and variable_frequency . To play tones, you'll need to provide all
four. pin is the pin to which you wired the piezo. frequency is the frequency of the
tone - in this case 660Hz. duty_cycle is set to 0 when the object is created, or
your piezo will play the tone constantly as long as a loop is present in your code.
Finally, variable_frequency is set to True to allow for changing the frequency
later in the code.

Then, you create a variable called button_pressed and set it to False initially, as the
button is not initially pressed.

button_pressed = False

In this example, you need a way to monitor for button presses while controlling the
timing of events in the code, such as lighting up and turning off the LEDs. In
CircuitPython, this is done using polling, wherein the program is repeatedly reading a
value until it changes.

In all the previous examples, you've used time.sleep() to control the timing of
events. This is an excellent method for many use cases. However, during sleep() ,
the code is essentially paused. Therefore, the board cannot accept any other inputs
or perform any other functions for that period of time. This type of code is referred to
as being blocking. In many cases, this is not an issue, but in this case, you are waiting
for a button to be pressed, so you'll need to do things a little differently.

This is where another function of the time module comes in: monotonic() . At any
given point in time, time.monotonic() is equal to the number seconds since your
board was last power-cycled. (The soft-reboot that occurs with the auto-reload when
you save changes to your CircuitPython code, or enter and exit the REPL, does not
start it over.) When it is called, it returns a number with a decimal, which is called a
float. If, for example, you assign time.monotonic() to a variable, and then call
monotonic() again to assign into a different variable, each variable is equal to the
number of seconds that time.monotonic() was equal to at the time the variables
were assigned. You can then subtract the first variable from the second to obtain the
amount of time that passed. Here is a simple example (https://adafru.it/BlT).

©Adafruit Industries Page 54 of 92

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example-2982241-3

For this example, you'll create a waiting_for_button() function that will "act as"
the sleep() function did in previous examples.

def waiting_for_button(duration):
global button_pressed # pylint: disable=global-statement
end = time.monotonic() + duration
while time.monotonic() < end:

if button.value:
button_pressed = True

The waiting_for_button() function requires a duration in seconds. Variables
created outside of functions are considered global variables. However, if you want to
change a global variable within a function, you need to use the global keyword. As
this function changes the state of the button_pressed variable, the first thing within
the function is global button_pressed . Next, you create the end variable and
assign it to time.monotonic() + duration which is the current time plus the
provided duration. Then, you create a loop that checks the current value of
time.monotonic() and checks to see if it is less than the end time. As long as that
is valid, it looks for the button to be pressed, in which case button.value is True,
and sets the button_pressed variable to True . Because a duration in seconds
is provided every time this function is called, the code spends that duration checking
for a button press. As the code is able to register a button press at any other time as
well, the code is no longer blocking, and is able to register a button press at any time!

The last part of the code is an infinite loop. The first thing inside the loop is an if
block that is looking for the button press.

while True:
if button_pressed:

red_led.value = True
for _ in range(10):

buzzer.duty_cycle = 2 ** 15
waiting_for_button(0.2)
buzzer.duty_cycle = 0
waiting_for_button(0.2)

button_pressed = False

The if block checks to see if the button_pressed variable is True , and if it is,
executes the code within the block. If it is True , it turns on the red LED. Then, the
for _ in range(10): tells the code to loop 10 times over the four lines of code
indented below it. This section sets the duty_cycle of the piezo buzzer to half
which causes it to play a tone, pauses for 0.2 seconds, then sets the duty_cycle
to 0 to stop playing the tone, and pauses again for 0.2 seconds. This effectively
causes a series of 10 beeps. And finally, it resets the button_pressed variable to
False , so the code is ready again to wait for another button press.

©Adafruit Industries Page 55 of 92

The last part of the infinite loop looks similar to the simple traffic light example, but
instead of using time.sleep() , it is using the waiting_for_button() function
you created earlier in this example.

[...]
red_led.value = True
waiting_for_button(5)
amber_led.value = True
waiting_for_button(2)
red_led.value = False
amber_led.value = False
green_led.value = True
waiting_for_button(5)
green_led.value = False
amber_led.value = True
waiting_for_button(3)
amber_led.value = False

The timing and LED color sequence are the same. Now, press the button. If the
program is currently in the middle of the loop, nothing will happen until it reaches the
end of the loop and begins again. When the loop starts over following a button press,
the LED will turn red, and the buzzer will beep, indicating it is safe for the pedestrian
to cross! After that section of code is completed, the LED sequence will begin again
with the red LED lighting up for 5 seconds. This is similar to how actual pedestrian
crossings work - the light remains red after the crossing indicates it is no longer safe
to ensure folks in the middle of crossing make it to the other side safely.

Press the button again to begin the sequence again. You can do this as many times as
you like, the code will continue to run. That's what goes into creating a traffic light
with pedestrian crossing!

Reaction Game
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

Studying human reaction time is literally a science (https://adafru.it/QkE). There are
many ways to test reaction time, but turning it into a game can make it fun. It's super
easy to build a simple reaction game using a microcontroller, a few components and
CircuitPython.

In this section, you'll learn how to use your Raspberry Pi Pico board to build a single-
player reaction game, including an LED and a button, that tells you your reaction time
in milliseconds. Then, add a more competitive aspect to it with the two-player version,

©Adafruit Industries Page 56 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://en.wikipedia.org/wiki/Mental_chronometry

built on the first example and including a second button, that tells you who pressed
their button first.

Parts Used
Diffused 5mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some indicators? We are big fans of
these diffused LEDs. They are fairly
bright, so they can be seen in daytime,
and from any angle. They go easily into a
breadboard and will add...
https://www.adafruit.com/product/4203

Through-Hole Resistors - 1.0K ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/4294

Tactile Button switch (6mm) x 20 pack
Little clicky switches are standard input
"buttons" on electronic projects. These
work best in a PCB but
https://www.adafruit.com/product/367

Wiring the Reaction Game
For this example you'll need your Pico board, an LED, a resistor, a button switch, and
a number of male to male jumper wires. A 220Ω-1.0KΩ resistor will work; a 220Ω
resistor is shown in the diagram.

©Adafruit Industries Page 57 of 92

https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/367
https://www.adafruit.com/product/367

The first step is to connect the LED and button to your Pico board. The diagram uses
a red LED, but you can choose any color, Wire them up as shown below.

Board GND to breadboard ground rail
(using a jumper wire)
Board 3V3 to breadboard power rail
(using jumper wire)
Board GP13 to 220Ω resistor
LED+ to 220Ω resistor
LED- to breadboard ground rail (using a
jumper wire)
Board GP14 to leg of button (using a
jumper wire)
Opposite leg of button to breadboard
power rail (using jumper wire)

Programming the Reaction Game
Now that you've wired up your reaction game, you can begin programming it.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Reaction game example for Pico. LED turns on for between 5 and 10 seconds. Once it
turns off, try
to press the button as quickly as possible to measure reaction timm.

REQUIRED HARDWARE:
* LED on pin GP13.
* Button switch on pin GP14.
"""
import time
import random
import board
import digitalio

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP14)
button.switch_to_input(pull=digitalio.Pull.DOWN)

led.value = True
time.sleep(random.randint(5, 10))
led.value = False
timer_start = time.monotonic()
while True:

if button.value:
reaction_time = (time.monotonic() - timer_start) * 1000 # Convert to ms

©Adafruit Industries Page 58 of 92

https://learn.adafruit.com//assets/98812
https://learn.adafruit.com//assets/98812

print("Your reaction time was", reaction_time, "milliseconds!")
break

The LED will turn on for a period of time. Once it turns off, try to press the button as
quickly as you can. Your reaction time will show up in the serial console! To restart the
game, click in the serial console and press CTRL+D to reload the board.

Now, a more detailed look at the code. First you import the necessary modules.

import time
import random
import board
import digitalio

You've imported time , board and digitalio previously, but this example uses a
new module as well: random .

Next, you set up the LED and the button.

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP14)
button.switch_to_input(pull=digitalio.Pull.DOWN)

Then, you begin the game. First, you turn on the LED. Then you use a time.sleep()
to keep it on for a random amount of time, between 5 and 10 seconds. The random
module includes the randint function, which returns a random integer between the
two provided integers, in this case 5 and 10 . Provide that function call to
time.sleep() , and it will use the integer as seconds. This is followed by you turning
off the LED.

led.value = True
time.sleep(random.randint(5, 10))
led.value = False

Then you begin the timer by setting a variable, timer_start , equal to
time.monotonic() .

timer_start = time.monotonic()

©Adafruit Industries Page 59 of 92

Now, you create a loop to check for the button press. Once the button is pressed, the
code checks the current value of time.monotonic() and subtracts from that the
initial value, e.g. when the timer started. This value is multiplied by 1000 to convert
the value from seconds to milliseconds. Then, the message, Your reaction time
was ### milliseconds! is printed to the serial console, where ### is the number
of milliseconds between the time the LED turned off and the time you pressed the
button.

while True:
if button.value:

reaction_time = (time.monotonic() - timer_start) * 1000 # Convert to ms
print("Your reaction time was", reaction_time, "milliseconds!")
break

The break is included because without it, the loop would continue to repeat
following the button press, and the message would be spammed to the serial console
repeatedly. You want to run the calculation once, and print the message once. The
break stops the loop from continuing, and the code stops running following the
button press.

Two Players Makes It More Fun
Trying to best yourself in a reaction game can be fun, but trying to best someone else
can be even better. You can easily involve them in the game above; invite them to
play and then compare reaction times to see who is fastest. But, with a few
modifications to the hardware and software, you can create a game you can play
together!

Wiring the Two Player Reaction Game
For this example, you'll need your current hardware setup, another button switch and
a few more male-to-male jumper wires.

Add the second button switch as shown below.

Board GP16 to leg of second button (using
a jumper wire)
Opposite leg of second button to
breadboard power rail (using jumper wire)

©Adafruit Industries Page 60 of 92

https://learn.adafruit.com//assets/98813
https://learn.adafruit.com//assets/98813

Programming the Two Player Reaction Game
This example looks quite similar to the single-player version with a few modifications.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Two-player reaction game example for Pico. LED turns on for between 5 and 10
seconds. Once it
turns off, try to press the button faster than the other player to see who wins.

REQUIRED HARDWARE:
* LED on pin GP13.
* Button switch on pin GP14.
* Button switch on GP16.
"""
import time
import random
import board
import digitalio

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button_one = digitalio.DigitalInOut(board.GP14)
button_one.switch_to_input(pull=digitalio.Pull.DOWN)
button_two = digitalio.DigitalInOut(board.GP16)
button_two.switch_to_input(pull=digitalio.Pull.DOWN)

led.value = True
time.sleep(random.randint(5, 10))
led.value = False
while True:

if button_one.value:
print("Player one wins!")
break

if button_two.value:
print("Player two wins!")
break

The LED still turns on for a period of time. Once it turns off, both of you can press your
respective buttons. The winner is mentioned in a message printed to the serial
console! To restart the game, click in the serial console and press CTRL+D to reload
the board.

Now, a detailed look at the code. The imports are identical to the single-player
version. The first modification needed is to include the setup for the second button.
As there are now two buttons, you'll need to update the variable name for the existing
button as well. Setup now looks like the following.

©Adafruit Industries Page 61 of 92

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button_one = digitalio.DigitalInOut(board.GP14)
button_one.switch_to_input(pull=digitalio.Pull.DOWN)
button_two = digitalio.DigitalInOut(board.GP16)
button_two.switch_to_input(pull=digitalio.Pull.DOWN)

The code that turns the LED on for a random number of seconds between 5 and 10
remains the same.

led.value = True
time.sleep(random.randint(5, 10))
led.value = False

This time, however, you do not start a timer as you are not recording a reaction time,
you are checking for which button is pressed first. So, the loop is significantly
different. This time, you're repeatedly checking for a button press, possible from both
button one and button two.

while True:
if button_one.value:

print("Player one wins!")
break

if button_two.value:
print("Player two wins!")
break

Based on whichever button is pressed first, the appropriate message prints to the
serial console, and the code stops the loop.

Click in the serial console and press CTRL+D to restart the game, and play again!

Burglar Alarm
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

Another common use of microcontrollers is in alarm systems, including home security
systems. While they can get complex with a significant number of sensors, a basic
motion sensing alarm is quite easy to build with a microcontroller and a few
components.

This section will show you how to use your Raspberry Pi Pico board to build a basic
motion sensor, and then turn it into a burglar alarm by adding lights and sound.

©Adafruit Industries Page 62 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Wiring the Basic Motion Sensor
For this example you'll need your Pico board, and a PIR sensor.

PIR (motion) sensor
PIR sensors are used to detect motion
from pets/humanoids from about 20 feet
away (possibly works on zombies, not
guaranteed). This one has an adjustable
delay before firing (approx...
https://www.adafruit.com/product/189

The first step is to connect the PIR sensor to your board. Wire them up as shown
below. If your PIR sensor comes with a cable, you can connect the cable and push the
ends of the wires directly into the breadboard. If your PIR sensor does not have a
cable, use male-to-female jumper wires to connect from the header on the sensor to
the breadboard.

Board GND to PIR sensor GND
Board VBUS to PIR sensor 5V
Board GP28 to PIR sensor data pin

Programming the Basic Motion Sensor
Now that you've wired up your motion sensor, you can begin programming it.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Simple motion sensor example for Pico. Prints to serial console when PIR sensor is
triggered.

REQUIRED HARDWARE:

©Adafruit Industries Page 63 of 92

https://www.adafruit.com/product/189
https://www.adafruit.com/product/189
https://learn.adafruit.com//assets/98771
https://learn.adafruit.com//assets/98771

* PIR sensor on pin GP28.
"""
import board
import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT

while True:
if pir.value:

print("ALARM! Motion detected!")
while pir.value:

pass

Now open the serial console and wave your hand in front of the sensor. Motion
detected!

If you sit still and wait a bit before waving your hand in front of the sensor, you'll see
ALARM! Motion detected! printed to the serial console again. However, you'll
notice that if you keep waving your hand in front of the sensor, it takes a while for it to
print another message. There is no delay in the code, so what's causing this
behavior? The PIR sensor has a delay built in. The sensor sends a signal to your Pico
board's GPIO pin when motion is detected, and maintains that signal for a period of
time before stopping it. Until the signal stops, it cannot detect further motion, and
therefore cannot trigger your motion detection code. Many PIR sensors have a
potentiometer on them you can use to adjust the length of this delay, though there is
always a minimum delay. Here is a detailed explanation (https://adafru.it/Cea).

Now, a more detailed look at the code. First import the two necessary modules.

import board
import digitalio

Next, you set up the PIR sensor using digitalio . You create the object, provide it a
pin, and set the pin direction to input.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT

pir.value returns True when there is motion detected, and False when no
motion is detected. Inside your loop, you check whether pir.value is True . If it is,
you print ALARM! Motion detected! . Then there is a second loop checking
pir.value , which runs continuously as long as the condition is True , which is a

©Adafruit Industries Page 64 of 92

https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/testing-a-pir#changing-pulse-time-and-timeout-length-2927247-16

way to say "wait until pir.value is False " and then move on. When you have a
loop inside of another loop, they are referred to as nested loops.

while True:
if pir.value:

print("ALARM! Motion detected!")
while pir.value:

pass

This code sequence helps the code only react to the initial change in signal from the
PIR sensor, instead of reporting motion detected for the entire time the signal is sent.
It means ALARM! Motion detected! is only printed once instead of being spammed
to the serial console for the entire duration of the signal event.

Printing to the serial console is enough to test that your PIR sensor is working, but it
doesn't amount to a useful alarm. Actual burglar alarms have lights and sirens that
notify everyone within range that something is wrong. With a few more components,
you can add the same functionality to your setup.

Burglar Alarm
Alarms are only useful if they have some way to notify you that they have been
triggered. A blinking LED is a simple way to see when the motion sensor has been
triggered. So, the first thing you'll do is add an LED to your motion sensing setup.

Wiring the Burglar Alarm with Light
This example builds on the previous. For this example, you'll need your current wiring
setup, an LED of any color, a resistor, and a number of male-to-male jumper wires. A
220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown in the diagram.

Connect the LED to your current setup as shown below. You'll need to modify your
current setup slightly by moving the PIR sensor GND. PIR signal and power do not
need to be moved.

Board GND to breadboard ground rail
(using a jumper wire)
Board GP13 to 220Ω resistor
LED+ to 220Ω resistor
LED- to breadboard ground rail (using a
jumper wire)
PIR sensor GND to breadboard ground
rail (using a jumper wire)

©Adafruit Industries Page 65 of 92

https://learn.adafruit.com//assets/98814
https://learn.adafruit.com//assets/98814

Programming the Burglar Alarm with Light
Now that you've wired up your burglar alarm with light, it's time to program it.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
A burglar alarm example for Pico. Quick flashing LED indicates alarm has been
triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
"""
import time
import board
import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

motion_detected = False
while True:

if pir.value and not motion_detected:
print("ALARM! Motion detected!")
motion_detected = True

if pir.value:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

motion_detected = pir.value

Now when you save your hand in front of the sensor, as well as printing the message
to the serial console, the LED will blink quickly to let you know motion has been
detected! Once the sensor signal stops, the LED will stop blinking.

Now, a more detailed look at the code. First you import the same modules as before,
but now you include time as well.

import time
import board
import digitalio

Then, in addition to the PIR sensor setup, you set up the LED.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

©Adafruit Industries Page 66 of 92

You create a variable called motion_detected and set it to False before the loop.

motion_detected = False

Inside the loop, you first check to see if pir.value is True AND
motion_detected is False . If BOTH of these conditions are valid, you print
ALARM! Motion detected! to the serial console and set motion_detected to
True . Next, you check if pir.value is True , and if so, you blink the LED on and off
every 0.1 seconds. Finally, you set motion_detected equal to pir.value . This
resets motion_detected to False once motion is no longer detected, and allows
for motion to be detected again.

while True:
if pir.value and not motion_detected:

print("ALARM! Motion detected!")
motion_detected = True

if pir.value:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

motion_detected = pir.value

To make your alarm even more effective, you could warn intruders that the alarm is
active by making the LED flash slowly when there is no motion detected. To do this,
simply replace the last line of the example with an else block that includes code
similar to the if pir.value: block, except with a longer time.sleep() .

[...]
else:

motion_detected = False
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

With the above update, your code.py file should look like the following.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
A burglar alarm example for Pico. Slow flashing LED indicates alarm is ready. Quick
flashing LED
indicates alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
"""
import time
import board

©Adafruit Industries Page 67 of 92

import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

motion_detected = False
while True:

if pir.value and not motion_detected:
print("ALARM! Motion detected!")
motion_detected = True

if pir.value:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

else:
motion_detected = False
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Your alarm system notifies everyone visually that it's running and lets you know when
motion is detected. Now it needs sound!

Wiring the Burglar Alarm with Light and Sound
This example builds on the previous. For this example, you'll need your current wiring
setup, and a piezo buzzer.

Connect the piezo buzzer to your current setup as shown below. Direction for the
piezo buzzer does not matter.

Board GP14 to one leg of piezo buzzer
Other leg of piezo buzzer to breadboard
ground rail

Programming the Burglar Alarm with Light and Sound
Now that you've wired up your burglar alarm with light and sound, it's time to program
it.

©Adafruit Industries Page 68 of 92

https://learn.adafruit.com//assets/98815
https://learn.adafruit.com//assets/98815

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
A burglar alarm example for Pico. Slow flashing LED indicates alarm is ready. Quick
flashing LED
and beeping buzzer indicate alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
* Piezo buzzer on pin GP14.
"""
import time
import board
import digitalio
import pwmio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0,
variable_frequency=True)

motion_detected = False
while True:

if pir.value and not motion_detected:
print("ALARM! Motion detected!")
motion_detected = True

if pir.value:
led.value = True
buzzer.duty_cycle = 2 ** 15
time.sleep(0.1)
led.value = False
buzzer.duty_cycle = 0
time.sleep(0.1)

else:
motion_detected = False
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Now wave your hand in front of the sensor. Motion detected, the LED blinks rapidly,
and now it beeps along with the blinking for an auditory indicator that it's been
triggered!

This code will look very similar to the previous example with a few modifications. First
you import the necessary modules, this time including pwmio .

import time
import board
import digitalio
import pwmio

©Adafruit Industries Page 69 of 92

Next, in addition to the PIR sensor and LED setup, you set up the piezo buzzer.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0,
variable_frequency=True)

Finally, you add two lines of code into the if block of the loop to turn the buzzer on
and off along with the LED.

while True:
if pir.value and not motion_detected:

print("ALARM! Motion detected!")
motion_detected = True

if pir.value:
led.value = True
buzzer.duty_cycle = 2 ** 15
time.sleep(0.1)
led.value = False
buzzer.duty_cycle = 0
time.sleep(0.1)

The rest of the loop remains the same. That's all there is to creating a burglar alarm
with light and sound!

Home security systems rarely cover only one room or area. They are often made up
of a network of many sensors connected to a single alarm system. You can easily add
more sensors to your setup to monitor multiple areas at the same time.

Wiring the Extended Burglar Alarm with Light and Sound
For this example, you'll need your current wiring setup and a second PIR sensor.

Connect the second PIR sensor as shown below. Since the VBUS connection is
already being used by the first PIR sensor, you'll need to make a slight modification.
Move both the Pico board's VBUS connection to the breadboard power rail, and the
5V pin on the first PIR sensor to the breadboard power rail.

©Adafruit Industries Page 70 of 92

Board VBUS to breadboard power rail
First PIR sensor 5V to breadboard power
rail
Second PIR sensor GND to breadboard
ground rail
Second PIR sensor 5V to breadboard
power rail
Board GP22 to second PIR sensor data
pin

Programming the Extended Burglar Alarm
Now that you've added another sensor to your setup, it's time to program it.

Update your code.py to the following, and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
A burglar alarm with two motion sensors example for Pico. Slow flashing LED
indicates alarm is
ready. Quick flashing LED and beeping buzzer indicate alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* PIR sensor on pin GP22.
* LED on pin GP13.
* Piezo buzzer on pin GP14.
"""
import time
import board
import digitalio
import pwmio

pir_one = digitalio.DigitalInOut(board.GP28)
pir_one.direction = digitalio.Direction.INPUT
pir_two = digitalio.DigitalInOut(board.GP22)
pir_two.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0,
variable_frequency=True)

motion_detected_one = False
motion_detected_two = False
while True:

if pir_one.value and not motion_detected_one:
print("ALARM! Motion detected in bedroom!")
motion_detected_one = True

if pir_two.value and not motion_detected_two:
print("ALARM! Motion detected in living room!")
motion_detected_two = True

if pir_one.value or pir_two.value:

©Adafruit Industries Page 71 of 92

https://learn.adafruit.com//assets/98816
https://learn.adafruit.com//assets/98816

led.value = True
buzzer.duty_cycle = 2 ** 15
time.sleep(0.1)
led.value = False
buzzer.duty_cycle = 0
time.sleep(0.1)

else:
motion_detected_one = False
motion_detected_two = False

led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Wave your hand over the first sensor to see motion reported in the bedroom. Wave
your hand over the second sensor to see motion reported in the living room. Multi-
area coverage!

Now a look at the code. The code will look very similar, but a number of modifications
are needed to make it both work properly and be easily understood. Imports remain
the same.

Setup now includes two PIR sensors, so it makes sense to update the variable names
to indicate the presence of two sensors. Below the first PIR sensor, include another
two lines of setup for the second one, with the appropriate pins. LED and buzzer
setup remain the same.

pir_one = digitalio.DigitalInOut(board.GP28)
pir_one.direction = digitalio.Direction.INPUT
pir_two = digitalio.DigitalInOut(board.GP22)
pir_two.direction = digitalio.Direction.INPUT

Before the loop, you create two variables to track whether motion has been detected,
and set them to False initially.

motion_detected_one = False
motion_detected_two = False

The loop begins with two if blocks. They each check a sensor value and the
respective motion detected variable. If the sensor value is returning True and the
motion_detected variable is False , then it prints the appropriate ALARM!
message to the serial console and sets the respective motion_detected variable to
True .

©Adafruit Industries Page 72 of 92

while True:
if pir_one.value and not motion_detected_one:

print("ALARM! Motion detected in bedroom!")
motion_detected_one = True

if pir_two.value and not motion_detected_two:
print("ALARM! +Motion detected in living room!")
motion_detected_two = True

Then, the code checks whether the sensors are returning True, and if they are blink
the LED and beep the buzzer on and off every 0.1 seconds.

[...]
if pir_one.value or pir_two.value:

led.value = True
buzzer.duty_cycle = 2 ** 15
time.sleep(0.1)
led.value = False
buzzer.duty_cycle = 0
time.sleep(0.1)

Finally, once motion is no longer detected, the motion_detected variables are set to
False, and the LED blinks on and off more slowly, every 0,.5 seconds.

[...]
else:

motion_detected_one = False
motion_detected_two = False

led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Now you know how to extend your alarm system to cover more than one area. You
can add more sensors as needed!

Potentiometer and PWM LED
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

The Pico's RP2040 microcontroller chip is a digital device, meaning by itself, it only
understands digital signals, which are either on or off. Digital devices cannot
understand analog(ue) signals, which can range anywhere between on and off.
Therefore, included in the RP2040 is an analog(ue)-to-digital converter, or ADC. An
ADC takes analog(ue) signals and converts them to digital signals. The ADC on the

©Adafruit Industries Page 73 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Pico is available on three pins: GP26, GP27, and GP28. To read analog(ue) signals,
you must use one of these three pins.

Each of the three pins can be used as an analog(ue) input, but to do that, you need an
analog(ue) signal, which you can easily get from a potentiometer. There are many
types of potentiometers available, such as the ones on the PIR sensor from the
Burglar Alarm (https://adafru.it/QCa) section of this guide. The type of potentiometer
you'll use for this example is called a "rotary potentiometer".

Reading a Potentiometer
It's simple to use CircuitPython to read the analog(ue) value from a potentiometer. The
built-in module analogio does all the heavy lifting for you, and provides you with an
easy way to read analog(ue) signals on analog(ue)-capable pins.

Wiring the Potentiometer

The first step is wiring your potentiometer. Connect it to your Pico as shown below.
Place the potentiometer on the breadboard with the pins-side towards you to
determine the proper left and right pins.

Half Sized Premium Breadboard - 400 Tie
Points
This is a cute, half-size breadboard
with 400 tie points, good for small
projects. It's 3.25" x 2.2" / 8.3cm x
5.5cm with a standard double-strip in
the...
https://www.adafruit.com/product/64

Breadboard trim potentiometer
These are our favorite trim pots, perfect
for breadboarding and prototyping. They
have a long grippy adjustment knob and
with 0.1" spacing, they plug into
breadboards or...
https://www.adafruit.com/product/356

©Adafruit Industries Page 74 of 92

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/burglar-alarm
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/356
https://www.adafruit.com/product/356

Premium Male/Male Jumper Wires - 20 x
3" (75mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are 3"
(75mm) long and come in a 'strip' of 20
(2 pieces of each...
https://www.adafruit.com/product/1956

For this example, you'll need your Pico, a potentiometer, and some male-to-male
jumper wires.

Board GND to breadboard ground rail
Board 3V3 to breadboard power rail
Board GP26 to potentiometer middle leg
Potentiometer left leg to breadboard
ground rail
Potentiometer right leg to breadboard
power rail

Programming to Read the Potentiometer

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Read the potentiometer value. Prints the value to the serial console every two
seconds.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
"""
import time
import board
import analogio

potentiometer = analogio.AnalogIn(board.GP26)

while True:
print(potentiometer.value)
time.sleep(2)

©Adafruit Industries Page 75 of 92

https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://learn.adafruit.com//assets/99533
https://learn.adafruit.com//assets/99533

Now, connect to the serial console. You should see a value between 0 and 65535,
depending on the current rotation of the knob, being printed out to the serial console.
Try turning the knob on the potentiometer. When you turn it to the left, the value goes
down, and when you turn it to the right, the value goes up.

Don't worry if your value never quite reaches 0 or 65535. Electronic components are
built with what's called a tolerance, which means the resulting values may not be
precise.

This value is the analog value. While you can say to yourself that 65535 is max
voltage and 0 is min voltage, without doing some math in your head, the rest of the
values aren't that useful to you. It's much easier to let CircuitPython do the math for
you.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Convert the potentiometer value to a voltage value. Prints the voltage value to the
serial console
every two seconds.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
"""
import time
import board
import analogio

potentiometer = analogio.AnalogIn(board.GP26)

get_voltage = 3.3 / 65535

while True:
voltage = potentiometer.value * get_voltage
print(voltage)
time.sleep(2)

The get_voltage equation provides a reasonable approximation of the voltage it
represents. The first number is the maximum voltage available from the 3V3 pin on
your Pico, and the second number is the maximum analog value. Essentially, dividing
3.3 / 65535 returns a voltage value based on the analog value.

If the values go the opposite direction when you turn the knob, try swapping
the ground and power connections to your potentiometer. You may have them
backwards!

©Adafruit Industries Page 76 of 92

To use the equation, you simply multiply the raw potentiometer value by the
get_voltage helper, and print the resulting value to the serial console. Now if you
check the serial console, you'll see a number between 0 and 3.3, depending on the
current rotation of the knob. Turn the knob to see the values change!

That's all there is to reading the values of a potentiometer as both a raw analog(ue)
value and a voltage value using CircuitPython and Pico!

Using PWM to Fade an LED
So far, everything you've done with LEDs have involved an on or off state. This is
because the digital outputs on a microcontroller and only be on or off. Turning these
outputs on and off is known as a pulse, and depending on the speed at which you
change the pin state, you can "modulate" these pulses using Pulse Width Modulation.
PWM has many uses. This example will show you how to use PWM to fade an LED up
and down.

Every pin on the Pico can do PWM, however, you cannot do PWM on every pin at the
same time. Some sets of pins on the Pico use the same PWM output, meaning they
cannot be used a the same time to create a PWM object. If you want to know which
pins use the same outputs, you can read the datasheet, or you can try to create a
PWM object using CircuitPython. If you try to create a PWM object on two conflicting
pins, CircuitPython will give you a
ValueError: All timers for this pin are in use error. If this happens,
choose a different pin.

Wiring the LED

The first step is to add an LED to your existing potentiometer setup.

Diffused 5mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some indicators? We are big fans of
these diffused LEDs. They are fairly
bright, so they can be seen in daytime,
and from any angle. They go easily into a
breadboard and will add...
https://www.adafruit.com/product/4203

©Adafruit Industries Page 77 of 92

https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203

Premium Male/Male Jumper Wires - 20 x
3" (75mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are 3"
(75mm) long and come in a 'strip' of 20
(2 pieces of each...
https://www.adafruit.com/product/1956

Through-Hole Resistors - 1.0K ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/4294

For this example, you'll need your existing wiring setup, an LED, a resistor, and a
male-to-male jumper wire. A 220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown
in the diagram.

Board GP14 to 220Ω resistor
LED+ to 220Ω resistor
LED- to breadboard ground rail (using a
jumper wire)

Programming to Fade the LED

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

©Adafruit Industries Page 78 of 92

https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://learn.adafruit.com//assets/99565
https://learn.adafruit.com//assets/99565

"""
Use PWM to fade an LED up and down using the potentiometer value as the duty cycle.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
* LED on pin GP14.
"""
import board
import analogio
import pwmio

potentiometer = analogio.AnalogIn(board.GP26)
led = pwmio.PWMOut(board.GP14, frequency=1000)

while True:
led.duty_cycle = potentiometer.value

Now try turning the potentiometer. As you turn it, the LED will fade up or down
depending on the direction you're rotating the knob. When the knob is all the way to
the left, the LED will be off. When it is all the way to the right, it will be brightest.

When creating the PWM object, you provide both the pin you connected the LED to
and a frequency. Then, inside the loop, we set the duty cycle equal to the
potentiometer raw analog(ue) value.

Duty cycle controls the pin's output. At 0% duty cycle, the pin is off. At 100% duty
cycle, the pin is fully on. A duty cycle of 50% means that the pin is on for half the
pulses, and off for half. The reading taken from the potentiometer is applied to the
LED PWM duty cycle, so a low reading is like a low voltage on an analog(ue) input
which means the LED will be dim, and a high reading is like a high voltage which
means the LED will be bright.

That's all there is to using PWM with CircuitPython and Pico to fade an LED!

Temperature Gauge
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

The Raspberry Pi Pico's CPU has a temperature sensor built into it. CircuitPython
makes it super simple to read this data from the sensor using the microcontroller
module.

Plug in your Pico board, open Mu, click into the serial console, and press CTRL+C
followed by ENTER to enter the REPL. At the REPL prompt (>>>), type the following:

©Adafruit Industries Page 79 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

import microcontroller
microcontroller.cpu.temperature

This returns the temperature of the sensor in Celsius. Note that it's not exactly the
ambient temperature and it's not super precise. But it's close!

Try holding your finger over the CPU, the large black square in the middle of your
Pico board. Then, check the temperature again. The returned temperature has likely
increased because you warmed the chip slightly!

If you'd like to print it out in Fahrenheit, use this simple formula: Fahrenheit = Celsius *
(9/5) + 32. It's super easy to do math using CircuitPython. Check it out!

microcontroller.cpu.temperature * (9 / 5) + 32

That's all there is to reading the temperature data from the temperature sensor built
into the CPU on your Raspberry Pi Pico using CircuitPython!

Data Logger
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

All of the projects in this guide have used your Raspberry Pi Pico while connected to
your computer. However, there are many microcontroller projects that work
standalone, powered from the wall or a battery pack, and your Pico is perfectly
capable of doing the same.

This section will show you how to use CircuitPython to read the internal temperature
data and write it to a file on the filesystem to create a temperature data logger.

For this example, you'll need your Pico board, and if you want to use it separated from
your computer, a micro USB wall charger or a USB battery pack and a micro USB
cable.

©Adafruit Industries Page 80 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Data Logger Wiring
CircuitPython does not allow your computer to write to the filesystem at the same
time as CircuitPython is writing to the filesystem. Therefore, if you simply run
storage.remount("/", readonly=False) in boot.py, CIRCUITPY is no longer
writable by your computer, which means you cannot write to or delete files from the
CIRCUITPY drive. This means you cannot modify boot.py. To return the filesystem to a
state writable by your computer, you would need to run some commands in the REPL.
More information on this process is available at the end of this page.

Alternatively, you can add a little extra code to boot.py that only runs remount if a
particular pin is connected to a ground pin. This means if you start up the board with
the specified pin connected to ground, the filesystem will be read-only to your
computer (and therefore writable by CircuitPython), and if you start up the board
without the pin connected to ground, the filesystem will be writable by your computer.
If you include this extra code, you will need to have a jumper wire handy. The boot.py
shown below contains this extra code. So, when you want to begin data logging, you'll
need to connect a jumper wire as shown below before plugging the Pico into USB.

For this example, you'll need your Pico, a breadboard, and a male-to-male jumper
wire.

Pico GP0 to Pico GND

Programming the Temperature Data Logger
Start with the jumper wire disconnected.

First create a file called boot.py on your CIRCUITPY drive, and save it with the
following contents.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
boot.py file for Pico data logging example. If pin GP0 is connected to GND when

©Adafruit Industries Page 81 of 92

https://learn.adafruit.com//assets/99564
https://learn.adafruit.com//assets/99564

the pico starts up, make the filesystem writeable by CircuitPython.
"""
import board
import digitalio
import storage

write_pin = digitalio.DigitalInOut(board.GP0)
write_pin.direction = digitalio.Direction.INPUT
write_pin.pull = digitalio.Pull.UP

If write pin is connected to ground on start-up, CircuitPython can write to
CIRCUITPY filesystem.
if not write_pin.value:

storage.remount("/", readonly=False)

It is important to know that the boot.py file is run only when the Pico starts up, e.g.
when it is plugged into USB or power. (It is NOT run when the board soft resets, e.g,
when you save a file etc.) This code sets up pin GP0 as an input with a pull-up.

Update your code.py to the following and save.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
Data logging example for Pico. Logs the temperature to a file on the Pico.
"""
import time
import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

try:
with open("/temperature.txt", "a") as datalog:

while True:
temp = microcontroller.cpu.temperature
datalog.write('{0:f}\n'.format(temp))
datalog.flush()
led.value = not led.value
time.sleep(1)

except OSError as e: # Typically when the filesystem isn't writeable...
delay = 0.5 # ...blink the LED every half second.
if e.args[0] == 28: # If the filesystem is full...

delay = 0.25 # ...blink the LED faster!
while True:

led.value = not led.value
time.sleep(delay)

The LED should begin blinking every 0.5 seconds. This lets you know the code is
running but nothing else is happening. Since you started up the board with the wire
disconnected, no data logging is occurring.

Disconnect your Pico from USB, and plug the jumper wire in as shown above. Then
plug your board into USB. The LED blinking will slow down to every 1 second.
CIRCUITPY will mount, but only as a read-only filesystem. You'll see a temperature.txt

©Adafruit Industries Page 82 of 92

file that wasn't there before. If you view this file, you'll see the beginning of a list of
temperatures. The temperature is checked every second and added to the file.

You can now let it run to track an ambient temperature in the area. If you use a USB
battery pack, you can place it anywhere to track temperature.

If you let it run for long enough, you can fill up the filesystem. At that time, the LED will
start blinking quickly, every 0.25 seconds, to let you know.

When you're ready to work with your Pico again, you can unplug it from USB, unplug
the jumper wire, and plug the Pico into your computer's USB again. CIRCUITPY will
once again be writable by your computer and you can update code as needed.

That's all there is to logging the ambient temperature using CircuitPython and Pico!

Data Logger Without Wiring
If you want to use your Pico without a breadboard for data logging, or simply don't
want to connect a wire between a pin and ground, you would use the following
boot.py file.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
boot.py file for Pico data logging example. If this file is present when
the pico starts up, make the filesystem writeable by CircuitPython.
"""
import storage

storage.remount("/", readonly=False)

If you add this file to CIRCUITPY, your board will always be read-only to your
computer when it is plugged into USB.

©Adafruit Industries Page 83 of 92

This will make the filesystem writable by CircuitPython for the purposes of data
logging every time the board is powered up. This means you can plug your Pico into
your computer's USB or a USB battery pack with no additional wiring necessary, and
the temperature logging will begin.

However, you'll notice that you cannot edit any of the files on the CIRCUITPY drive.
So how do you make the filesystem writable by your computer again? You can use the
REPL.

Using the REPL to Rename boot.py
Even when you can't write to CIRCUITPY, you can still get to the REPL. Connect your
Pico to your computer via USB, and connect to the serial console. Enter the REPL
(>>>) and one of the following commands.

To rename boot.py to something else so your Pico no longer sees it, run the
following.

import os
os.rename("boot.py", "boot1.py")

To remove boot.py entirely, run the following.

import os
os.remove("boot.py")

That's all there is to data logging with CircuitPython and Pico without needing a
jumper wire!

NeoPixel LEDs
To get you started with how to program your Pico in CircuitPython, especially for
those who may have started out with the official MicroPython setup, we've 'ported'
the Getting Started with MicroPython on Pico book (https://adafru.it/QkD) examples to
CircuitPython. The book is awesome, please download/purchase it to support
Raspberry Pi Press (https://adafru.it/QkD)!

It's easy to control addressable RGB NeoPixel LEDs with the Raspberry Pi Pico,
CircuitPython and the Adafruit CircuitPython NeoPixel (https://adafru.it/yew) library.
Simply connect the LEDs to your Pico board, copy the library to your CIRCUITPY
drive, and update your code.py file. That's all there is to it.

This section will show you how to wire up a NeoPixel LED strip to your Pico board,
install the NeoPixel library, and walk through a few examples of controlling the LEDs.

©Adafruit Industries Page 84 of 92

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel

Adafruit NeoPixel LED Strip w/ Alligator
Clips - 60 LED/m
Adding glowy color to your projects has
never been easier: no more soldering or
stripping wires, clip 'em on and glow! This
Adafruit NeoPixel LED Strip with
Alligator...
https://www.adafruit.com/product/3811

Wiring the NeoPixel LED Strip
The first step is to connect the NeoPixel LEDs to your Pico board. Wire them as shown
below.

Note that while your Pico board can control a considerable number of NeoPixel LEDs,
the power you can draw from the 5V VBUS pin on your Pico board is limited. The
examples below assume a strip of 30 NeoPixel LEDs, which the Pico board is capable
of handling. However, if you want to control more than that, it is suggested that you
use an external power supply to power your LEDs. Check out the NeoPixel
guide (https://adafru.it/dhw) for everything there is to know about NeoPixel LEDs,
including power requirements and suggestions.

Board GND to NeoPixel GND
Board VBUS to NeoPixel 5V (power)
Board GP0 to NeoPixel signal

Installing the Adafruit CircuitPython NeoPixel Library
You'll need to install the Adafruit CircuitPython NeoPixel (https://adafru.it/yew) library
on your CircuitPython board.

Next you'll need to install the necessary library to use the NeoPixels -- carefully follow
the steps to find and install this library from Adafruit's CircuitPython library
bundle (https://adafru.it/ENC). Our CircuitPython starter guide has a great page on
how to install the library bundle (https://adafru.it/ABU).

©Adafruit Industries Page 85 of 92

https://www.adafruit.com/product/3811
https://www.adafruit.com/product/3811
https://www.adafruit.com/product/3811
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com//assets/98790
https://learn.adafruit.com//assets/98790
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Copy the following file from the bundle to the lib folder on your CIRCUITPY drive:

neopixel.mpy

Before continuing make sure your board's
lib folder or root filesystem has the
neopixel.mpy file copied over.

Programming NeoPixel LEDs
Now that you've wired up your NeoPixel LEDs and loaded the NeoPixel library onto
your CIRCUITPY drive, it's time to begin programming.

Update your code.py to the following. You should verify that num_pixels matches
the number of NeoPixel LEDs you have connected to your board, if you connected a
different form factor or strip length to your Pico board.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
NeoPixel example for Pico. Turns the NeoPixels red.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import board
import neopixel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels)
pixels.brightness = 0.5

while True:
pixels.fill((255, 0, 0))

The NeoPixels light up red!

Now a quick look at the code. First, you import the necessary module and library.

•

©Adafruit Industries Page 86 of 92

https://learn.adafruit.com//assets/99291
https://learn.adafruit.com//assets/99291

import board
import neopixel

Next you create a variable to set the number of pixels, which defaults to 30 .

num_pixels = 30

Then, you set up the NeoPixels. The neopixel object requires two things: the pin
the NeoPixels are connected to, and the number of NeoPixels connected. In this case,
you connected the strip to GP0 on your Pico board, and you set the number of pixels
in the previous line of code.

pixels = neopixel.NeoPixel(board.GP0, num_pixels)

Following that, you set the brightness of the NeoPixels to 0.5 , or 50%. brightness
expects a float between 0.0 and 1.0, where 0 is off, and 1 is 100% brightness. Point the
NeoPixels away from you, or put a sheet of paper over them to diffuse them a bit, and
try setting brightness to 1. They can get really bright! That's why we set the brightness
to half, which is still quite bright. You can set it even lower if you like.

pixels.brightness = 0.5

LED colors are set using a combination of red, green, and blue, often in the form of an
(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set the LED
to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and
no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you
set a combination, such as cyan which is (0, 255, 255) , with equal amounts of
green and blue.

Inside your loop, you use the fill() function to "fill", or turn on, the NeoPixels a
specified color. The fill() function works with both RGB tuple colors, and hex
colors. This example turns them on red.

while True:
pixels.fill((255, 0, 0))

Modules are built into CircuitPython. Libraries are separate files or groups of
files saved to the CIRCUITPY drive. Regardless, you import them both the
same way.

©Adafruit Industries Page 87 of 92

Note the double parentheses - this is specific to setting the color using an RGB tuple.
The fill() function expects one argument, and the entire tuple, including its
parentheses, is that single argument. Without the parentheses around the tuple,
fill() will see it as three arguments separated by commas, and your code will not
run.

Now, try turning them green. Update the loop to the following:

while True:
pixels.fill((0, 255, 0))

Green!

Now try blue.

while True:
pixels.fill((0, 0, 255))

Easy!

What if you wanted to make them light up the three colors in sequence without
manually updating your code each time? For that, you'll need time .

Update your code.py to the following.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
NeoPixel example for Pico. Turns the NeoPixels red, green, and blue in sequence.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import time
import board
import neopixel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels)
pixels.brightness = 0.5

while True:
pixels.fill((255, 0, 0))
time.sleep(0.5)
pixels.fill((0, 255, 0))
time.sleep(0.5)
pixels.fill((0, 0, 255))
time.sleep(0.5)

©Adafruit Industries Page 88 of 92

You can change the colors by editing the color tuples, and the timing by updating the
number of seconds given to time.sleep() .

For example, update the loop to the following for three new colors and a slower
change.

while True:
pixels.fill((255, 255, 0))
time.sleep(1)
pixels.fill((0, 255, 255))
time.sleep(1)
pixels.fill((255, 0, 255))
time.sleep(1)

And finally, what about rainbows? Rainbows involve using colorwheel and some
math.

Update your code.py to the following.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
NeoPixel example for Pico. Displays a rainbow on the NeoPixels.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import time
import board
from rainbowio import colorwheel
import neopixel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels, auto_write=False)
pixels.brightness = 0.5

def rainbow(speed):
for j in range(255):

for i in range(num_pixels):
pixel_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(pixel_index & 255)

pixels.show()
time.sleep(speed)

while True:
rainbow(0)

In addition to the three previous imports, we also import colorwheel from the built-
in _pixelbuf module.

from _pixelbuf import colorwheel

©Adafruit Industries Page 89 of 92

Then, there's a change to the pixel setup. Note, that in the neopixel object, you now
set auto_write=False . This means that when you tell the pixels to do something,
nothing will happen unless you call pixels.show() . This is necessary for the
rainbow function to work. Be aware that if you add in some of the code from above,
you'll have to call pixels.show() after filling the pixels a given color or they won't
turn on!

pixels = neopixel.NeoPixel(board.GP0, num_pixels, auto_write=False)

Next comes the rainbow() function. This function takes one argument, speed in
seconds.

def rainbow(speed):
for j in range(255):

for i in range(num_pixels):
pixel_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(pixel_index & 255)

pixels.show()
time.sleep(speed)

Finally, you call the rainbow() function in a loop. For fast rainbows, set it to 0 . To
slow it down, increase the number.

while True:
rainbow(0)

Rainbows!

That's all there is to basic NeoPixel LED control.

If you want to get really fancy and take it further, you can check out the guide on the
Adafruit CircuitPython LED Animation library (https://adafru.it/LZF), which shows how
the library makes displaying animations on RGB LEDs super simple.

If you write some NeoPixel code, and your pixels aren't lighting up, check that
auto_write isn't set to False, or make sure you call pixels.show()!

©Adafruit Industries Page 90 of 92

https://learn.adafruit.com/circuitpython-led-animations
https://learn.adafruit.com/circuitpython-led-animations

FAQ and Troubleshooting
FAQ
board.I2C(), board.SPI(), and board.UART() do not exist.
What should I do?
The Pico does not have specific pins labeled on the board as the default I2C, SPI, or
UART pins. See the Pinouts (https://adafru.it/Qsd) page for more details.

Is pulseio supported?
pulseio is supported. pulsein and pulseout were added and are now
supported.

CircuitPython Essentials
CircuitPython Essentials (https://adafru.it/Bfr)

Downloads
Raspberry Pi: Getting Started with your Pico (https://adafru.it/QTe)
RP2040 Datasheet (https://adafru.it/QTf)
Hardware Design with RP2040 (https://adafru.it/QTA)
Raspberry Pi Pico Datasheet (https://adafru.it/QTB)
Getting Started with Raspberry Pi Pico (https://adafru.it/QTC)
Pico C/C++ SDK (https://adafru.it/QTD)
Pico Python SDK (https://adafru.it/QTE) (MicroPython, not CircuitPython)

Here's a paper template (https://adafru.it/QTF) to cut out and use under your Pico to
see the pinouts. Print this PDF out at exact size (do not use Shrink to Fit or Fit to Page
options). Punch holes in the template using jumpers as needed. To punch the pins
through initially, try placing the paper underneath the Pico on top of some anti-static
foam.

•
•
•
•
•
•
•

©Adafruit Industries Page 91 of 92

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/pinouts
https://learn.adafruit.com/circuitpython-essentials
https://raspberrypi.org/documentation/pico/getting-started/
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/hardware_design_with_rp2040.pdf
https://datasheets.raspberrypi.org/pico/pico_datasheet.pdf
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_python_sdk.pdf
https://cdn-learn.adafruit.com/assets/assets/000/100/354/original/pico6.pdf

©Adafruit Industries Page 92 of 92

	Getting Started with Raspberry Pi Pico and CircuitPython
	Table of Contents
	Overview
	Pinouts
	Using Adafruit AR with Raspberry Pi Pico
	MicroPython or CircuitPython?
	What is CircuitPython?
	Installing CircuitPython
	Installing the Mu Editor
	CircuitPython Programming Basics
	CircuitPython Pins and Modules
	Blinky and a Button
	Traffic Light and Pedestrian Crossing
	Reaction Game
	Burglar Alarm
	Potentiometer and PWM LED
	Temperature Gauge
	Data Logger
	NeoPixel LEDs
	FAQ and Troubleshooting
	CircuitPython Essentials
	Downloads

	Overview
	Other Required Hardware

	Pinouts
	No Basic Default board Devices
	I2C Example
	SPI Example
	UART Example

	The board.STEMMA_I2C() Object
	Power Sensing Pins Available in CircuitPython

	Using Adafruit AR with Raspberry Pi Pico
	To get started:

	MicroPython or CircuitPython?
	CircuitPython is a 'fork' based on MicroPython
	So what's different?
	Why Use MicroPython?
	It's great to know both!
	To get started quick:

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	CircuitPython Programming Basics
	Indentation and Code Loops
	Conditionals and Variables

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Blinky and a Button
	The Built-In LED
	An External LED
	Using a Button as an Input
	Control an External LED with a Button

	Traffic Light and Pedestrian Crossing
	Parts Used
	Wiring the Traffic Light
	Programming the Traffic Light

	Traffic Light and Pedestrian Crossing
	Wiring the Pedestrian Crossing
	Programming the Traffic Light and Pedestrian Crossing

	Reaction Game
	Parts Used
	Wiring the Reaction Game
	Programming the Reaction Game
	Two Players Makes It More Fun
	Wiring the Two Player Reaction Game
	Programming the Two Player Reaction Game

	Burglar Alarm
	Wiring the Basic Motion Sensor
	Programming the Basic Motion Sensor

	Burglar Alarm
	Wiring the Burglar Alarm with Light
	Programming the Burglar Alarm with Light
	Wiring the Burglar Alarm with Light and Sound
	Programming the Burglar Alarm with Light and Sound
	Wiring the Extended Burglar Alarm with Light and Sound
	Programming the Extended Burglar Alarm

	Potentiometer and PWM LED
	Reading a Potentiometer
	Wiring the Potentiometer
	Programming to Read the Potentiometer

	Using PWM to Fade an LED
	Wiring the LED
	Programming to Fade the LED

	Temperature Gauge
	Data Logger
	Data Logger Wiring
	Programming the Temperature Data Logger
	Data Logger Without Wiring
	Using the REPL to Rename boot.py

	NeoPixel LEDs
	Wiring the NeoPixel LED Strip
	Installing the Adafruit CircuitPython NeoPixel Library
	Programming NeoPixel LEDs

	FAQ and Troubleshooting
	FAQ
	board.I2C(), board.SPI(), and board.UART() do not exist. What should I do?
	Is pulseio supported?

	CircuitPython Essentials
	Downloads

